Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells

Abstract

Coupling between transcription and RNA processing is a key gene regulatory mechanism. Here we use chromatin immunoprecipitation to detect transcription-dependent accumulation of the precursor mRNA (pre-mRNA) splicing factors hnRNP A1, U2AF65 and U1 and U5 snRNPs on the intron-containing human FOS gene. These factors were poorly detected on intronless heat-shock and histone genes, a result that opposes direct recruitment by RNA polymerase II (Pol II) or the cap-binding complex in vivo. However, an observed RNA-dependent interaction between U2AF65 and active forms of Pol II may stabilize U2AF65 binding to intron-containing nascent RNA. We establish chromatin-RNA immunoprecipitation and show that FOS pre-mRNA is cotranscriptionally spliced. Notably, the topoisomerase I inhibitor camptothecin, which stalls elongating Pol II, increased cotranscriptional splicing factor accumulation and splicing in parallel. This provides direct evidence for a kinetic link between transcription, splicing factor recruitment and splicing catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Induction of FOS and HSPA1B transcription leads to downstream accumulation of RNA Pol II, CBP80 and hnRNP A1.
Figure 3: Splicing factors accumulate cotranscriptionally on the intron-containing FOS gene.
Figure 4: Splicing factors do not accumulate on the induced heat-shock gene, HSPA1B, in the presence or absence of camptothecin.
Figure 5: Coimmunoprecipitation of splicing factors with RNA Pol II without cross-linking.
Figure 6: Cotranscriptional FOS pre-mRNA splicing detected by ChRIP and enhanced by camptothecin.

Similar content being viewed by others

References

  1. Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002).

    CAS  Google Scholar 

  2. Neugebauer, K.M. On the importance of being co-transcriptional. J. Cell Sci. 115, 3865–3871 (2002).

    Article  CAS  Google Scholar 

  3. Bentley, D.L. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr. Opin. Cell Biol. 17, 251–256 (2005).

    Article  CAS  Google Scholar 

  4. Kornblihtt, A.R. Chromatin, transcript elongation and alternative splicing. Nat. Struct. Mol. Biol. 13, 5–7 (2006).

    Article  CAS  Google Scholar 

  5. Cougot, N., van Dijk, E., Babajko, S. & Seraphin, B. 'Cap-tabolism'. Trends Biochem. Sci. 29, 436–444 (2004).

    Article  CAS  Google Scholar 

  6. Schroeder, S.C., Schwer, B., Shuman, S. & Bentley, D. Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev. 14, 2435–2440 (2000).

    Article  CAS  Google Scholar 

  7. Komarnitsky, P., Cho, E.J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460 (2000).

    Article  CAS  Google Scholar 

  8. Cheng, C. & Sharp, P.A. RNA polymerase II accumulation in the promoter-proximal region of the dihydrofolate reductase and gamma-actin genes. Mol. Cell. Biol. 23, 1961–1967 (2003).

    Article  CAS  Google Scholar 

  9. Kornblihtt, A.R., de la Mata, M., Fededa, J.P., Munoz, M.J. & Nogues, G. Multiple links between transcription and splicing. RNA 10, 1489–1498 (2004).

    Article  CAS  Google Scholar 

  10. Jurica, M.S. & Moore, M.J. Pre-mRNA splicing: awash in a sea of proteins. Mol. Cell 12, 5–14 (2003).

    Article  CAS  Google Scholar 

  11. Black, D.L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291–336 (2003).

    Article  CAS  Google Scholar 

  12. Kotovic, K.M., Lockshon, D., Boric, L. & Neugebauer, K.M. Cotranscriptional recruitment of the U1 snRNP to intron-containing genes in yeast. Mol. Cell. Biol. 23, 5768–5779 (2003).

    Article  CAS  Google Scholar 

  13. Gornemann, J., Kotovic, K.M., Hujer, K. & Neugebauer, K.M. Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol. Cell 19, 53–63 (2005).

    Article  Google Scholar 

  14. Lacadie, S.A. & Rosbash, M. Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5'ss base pairing in yeast. Mol. Cell 19, 65–75 (2005).

    Article  CAS  Google Scholar 

  15. Tardiff, D.F. & Rosbash, M. Arrested yeast splicing complexes indicate stepwise snRNP recruitment during in vivo spliceosome assembly. RNA 12, 968–979 (2006).

    Article  CAS  Google Scholar 

  16. McCracken, S. et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385, 357–361 (1997).

    Article  CAS  Google Scholar 

  17. Licatalosi, D.D. et al. Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II. Mol. Cell 9, 1101–1111 (2002).

    Article  CAS  Google Scholar 

  18. Yih, L.H., Peck, K. & Lee, T.C. Changes in gene expression profiles of human fibroblasts in response to sodium arsenite treatment. Carcinogenesis 23, 867–876 (2002).

    Article  CAS  Google Scholar 

  19. Stewart, A.F., Herrera, R.E. & Nordheim, A. Rapid induction of c-fos transcription reveals quantitative linkage of RNA polymerase II and DNA topoisomerase I enzyme activities. Cell 60, 141–149 (1990).

    Article  CAS  Google Scholar 

  20. Fivaz, J., Bassi, M.C., Pinaud, S. & Mirkovitch, J. RNA polymerase II promoter-proximal pausing upregulates c-fos gene expression. Gene 255, 185–194 (2000).

    Article  CAS  Google Scholar 

  21. Rasmussen, E.B. & Lis, J.T. In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes. Proc. Natl. Acad. Sci. USA 90, 7923–7927 (1993).

    Article  CAS  Google Scholar 

  22. Boehm, A.K., Saunders, A., Werner, J. & Lis, J.T. Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock. Mol. Cell. Biol. 23, 7628–7637 (2003).

    Article  CAS  Google Scholar 

  23. Dreyfuss, G., Kim, V.N. & Kataoka, N. Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol. 3, 195–205 (2002).

    Article  CAS  Google Scholar 

  24. Hutchison, S., LeBel, C., Blanchette, M. & Chabot, B. Distinct sets of adjacent heterogeneous nuclear ribonucleoprotein (hnRNP) A1/A2 binding sites control 5′ splice site selection in the hnRNP A1 mRNA precursor. J. Biol. Chem. 277, 29745–29752 (2002).

    Article  CAS  Google Scholar 

  25. Zhu, J., Mayeda, A. & Krainer, A.R. Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins. Mol. Cell 8, 1351–1361 (2001).

    Article  CAS  Google Scholar 

  26. Burd, C.G. & Dreyfuss, G. RNA binding specificity of hnRNP A1: significance of hnRNP A1 high-affinity binding sites in pre-mRNA splicing. EMBO J. 13, 1197–1204 (1994).

    Article  CAS  Google Scholar 

  27. Ljungman, M. & Hanawalt, P.C. The anti-cancer drug camptothecin inhibits elongation but stimulates initiation of RNA polymerase II transcription. Carcinogenesis 17, 31–35 (1996).

    Article  CAS  Google Scholar 

  28. Collins, I., Weber, A. & Levens, D. Transcriptional consequences of topoisomerase inhibition. Mol. Cell. Biol. 21, 8437–8451 (2001).

    Article  CAS  Google Scholar 

  29. Khobta, A. et al. Early effects of topoisomerase I inhibition on RNA polymerase II along transcribed genes in human cells. J. Mol. Biol. 357, 127–138 (2006).

    Article  CAS  Google Scholar 

  30. Kroeger, P.E. & Rowe, T.C. Analysis of topoisomerase I and II cleavage sites on the Drosophila actin and Hsp70 heat shock genes. Biochemistry 31, 2492–2501 (1992).

    Article  CAS  Google Scholar 

  31. Goldstrohm, A.C., Greenleaf, A.L. & Garcia-Blanco, M.A. Co-transcriptional splicing of pre-messenger RNAs: considerations for the mechanism of alternative splicing. Gene 277, 31–47 (2001).

    Article  CAS  Google Scholar 

  32. Robert, F., Blanchette, M., Maes, O., Chabot, B. & Coulombe, B. A human RNA polymerase II-containing complex associated with factors necessary for spliceosome assembly. J. Biol. Chem. 277, 9302–9306 (2002).

    Article  CAS  Google Scholar 

  33. Kim, E., Du, L., Bregman, D.B. & Warren, S.L. Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of pre-mRNA. J. Cell Biol. 136, 19–28 (1997).

    Article  CAS  Google Scholar 

  34. Chabot, B., Bisotto, S. & Vincent, M. The nuclear matrix phosphoprotein p255 associates with splicing complexes as part of the [U4/U6.U5] tri-snRNP particle. Nucleic Acids Res. 23, 3206–3213 (1995).

    Article  CAS  Google Scholar 

  35. Mortillaro, M.J. et al. A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix. Proc. Natl. Acad. Sci. USA 93, 8253–8257 (1996).

    Article  CAS  Google Scholar 

  36. Osheim, Y.N., Miller, O.L., Jr. & Beyer, A.L. RNP particles at splice junction sequences on Drosophila chorion transcripts. Cell 43, 143–151 (1985).

    Article  CAS  Google Scholar 

  37. Beyer, A.L. & Osheim, Y.N. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev. 2, 754–765 (1988).

    Article  CAS  Google Scholar 

  38. Wetterberg, I., Bauren, G. & Wieslander, L. The intranuclear site of excision of each intron in Balbiani ring 3 pre-mRNA is influenced by the time remaining to transcription termination and different excision efficiencies for the various introns. RNA 2, 641–651 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bauren, G. & Wieslander, L. Splicing of Balbiani ring 1 gene pre-mRNA occurs simultaneously with transcription. Cell 76, 183–192 (1994).

    Article  CAS  Google Scholar 

  40. Kiseleva, E., Wurtz, T., Visa, N. & Daneholt, B. Assembly and disassembly of spliceosomes along a specific pre-messenger RNP fiber. EMBO J. 13, 6052–6061 (1994).

    Article  CAS  Google Scholar 

  41. Wyatt, J.R., Sontheimer, E.J. & Steitz, J.A. Site-specific cross-linking of mammalian U5 snRNP to the 5′ splice site before the first step of pre-mRNA splicing. Genes Dev. 6, 2542–2553 (1992).

    Article  CAS  Google Scholar 

  42. Maroney, P.A., Romfo, C.M. & Nilsen, T.W. Functional recognition of 5′ splice site by U4/U6.U5 tri-snRNP defines a novel ATP-dependent step in early spliceosome assembly. Mol. Cell 6, 317–328 (2000).

    Article  CAS  Google Scholar 

  43. Stevens, S.W. et al. Composition and functional characterization of the yeast spliceosomal penta-snRNP. Mol. Cell 9, 31–44 (2002).

    Article  CAS  Google Scholar 

  44. Malca, H., Shomron, N. & Ast, G. The U1 snRNP base pairs with the 5′ splice site within a penta-snRNP complex. Mol. Cell. Biol. 23, 3442–3455 (2003).

    Article  CAS  Google Scholar 

  45. Ujvari, A. & Luse, D.S. Newly initiated RNA encounters a factor involved in splicing immediately upon emerging from within RNA polymerase II. J. Biol. Chem. 279, 49773–49779 (2004).

    Article  CAS  Google Scholar 

  46. Hicks, M.J., Yang, C.R., Kotlajich, M.V. & Hertel, K.J. Linking splicing to Pol II transcription stabilizes pre-mRNAs and influences splicing patterns. PLoS Biol. 4, e147 (2006).

    Article  Google Scholar 

  47. Ghosh, S. & Garcia-Blanco, M.A. Coupled in vitro synthesis and splicing of RNA polymerase II transcripts. RNA 6, 1325–1334 (2000).

    Article  CAS  Google Scholar 

  48. Das, R. et al. Functional coupling of RNAP II transcription to spliceosome assembly. Genes Dev. 20, 1100–1109 (2006).

    Article  CAS  Google Scholar 

  49. Fong, N. & Bentley, D.L. Capping, splicing, and 3′ processing are independently stimulated by RNA polymerase II: different functions for different segments of the CTD. Genes Dev. 15, 1783–1795 (2001).

    Article  CAS  Google Scholar 

  50. Bird, G., Zorio, D.A. & Bentley, D.L. RNA polymerase II carboxy-terminal domain phosphorylation is required for cotranscriptional pre-mRNA splicing and 3′-end formation. Mol. Cell. Biol. 24, 8963–8969 (2004).

    Article  CAS  Google Scholar 

  51. Roberts, G.C., Gooding, C., Mak, H.Y., Proudfoot, N.J. & Smith, C.W. Co-transcriptional commitment to alternative splice site selection. Nucleic Acids Res. 26, 5568–5572 (1998).

    Article  CAS  Google Scholar 

  52. Howe, K.J., Kane, C.M. & Ares, M., Jr. Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae. RNA 9, 993–1006 (2003).

    Article  CAS  Google Scholar 

  53. de la Mata, M. et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol. Cell 12, 525–532 (2003).

    Article  CAS  Google Scholar 

  54. Kadener, S. et al. Antagonistic effects of T-Ag and VP16 reveal a role for RNA pol II elongation on alternative splicing. EMBO J. 20, 5759–5768 (2001).

    Article  CAS  Google Scholar 

  55. Cramer, P., Pesce, C.G., Baralle, F.E. & Kornblihtt, A.R. Functional association between promoter structure and transcript alternative splicing. Proc. Natl. Acad. Sci. USA 94, 11456–11460 (1997).

    Article  CAS  Google Scholar 

  56. Batsche, E., Yaniv, M. & Muchardt, C. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat. Struct. Mol. Biol. 13, 22–29 (2006).

    Article  CAS  Google Scholar 

  57. Kontermann, R.E. et al. Characterization of the epitope recognized by a monoclonal antibody directed against the largest subunit of Drosophila RNA polymerase II. Biol. Chem. Hoppe Seyler 376, 473–481 (1995).

    Article  CAS  Google Scholar 

  58. Gama-Carvalho, M. et al. Targeting of U2AF65 to sites of active splicing in the nucleus. J. Cell Biol. 137, 975–987 (1997).

    Article  CAS  Google Scholar 

  59. Kuo, M.H. & Allis, C.D. In vivo cross-linking and immunoprecipitation for studying dynamic protein:DNA associations in a chromatin environment. Methods 19, 425–433 (1999).

    Article  CAS  Google Scholar 

  60. Chakrabarti, S.K., James, J.C. & Mirmira, R.G. Quantitative assessment of gene targeting in vitro and in vivo by the pancreatic transcription factor, Pdx1. Importance of chromatin structure in directing promoter binding. J. Biol. Chem. 277, 13286–13293 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Special thanks to F. Stewart for his suggestions regarding FOS induction and the use of camptothecin. We are grateful to D. Black, M. Rosbash, C. Eckmann, T. Langenberg, D. Stanek and members of our laboratory for helpful discussions and comments on the manuscript. This research was funded by support from the Max Planck Gesellschaft.

Author information

Authors and Affiliations

Authors

Contributions

K.M.N. and I.L. conceived and designed the experiments. I.L. and A.K.S. performed the experiments. I.L. analyzed the data. K.M.N. wrote the paper.

Corresponding author

Correspondence to Karla M Neugebauer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Sodium arsenite treatment does not alter the nuclear localization of U1-70K, U2AF65 and snRNAs. (PDF 110 kb)

Supplementary Fig. 2

Distribution of acetylated histone H4 along the induced FOS gene with and without camptothecin. (PDF 88 kb)

Supplementary Fig. 3

Characterization of the ChRIP assay. (PDF 257 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Listerman, I., Sapra, A. & Neugebauer, K. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat Struct Mol Biol 13, 815–822 (2006). https://doi.org/10.1038/nsmb1135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1135

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing