Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nucleosome sliding mechanisms: new twists in a looped history

Abstract

Nucleosomes, the basic organizational units of chromatin, package and regulate eukaryotic genomes. ATP-dependent nucleosome-remodeling factors endow chromatin with structural flexibility by promoting assembly or disruption of nucleosomes and the exchange of histone variants. Furthermore, most remodeling factors induce nucleosome movements through sliding of histone octamers on DNA. We summarize recent progress toward unraveling the basic nucleosome sliding mechanism and the interplay of the remodelers' DNA translocases with accessory domains. Such domains optimize and regulate the basic sliding reaction and exploit sliding to achieve diverse structural effects, such as nucleosome positioning or eviction, or the regular spacing of nucleosomes in chromatin.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic family tree illustrating the classification of nucleosome-remodeling ATPases of the Snf2 family according to their relatedness at the sequence level.
Figure 2: The different physiological outcomes of nucleosome sliding.
Figure 3: Nucleosome sliding mechanisms.
Figure 4: Recent insights into nucleosome sliding by remodeling factors of the ISWI subfamily.
Figure 5: Model for the regulation of the activity of ISWI-type remodeling enzymes.

Similar content being viewed by others

References

  1. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Davey, C.A., Sargent, D.F., Luger, K., Maeder, A.W. & Richmond, T.J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J. Mol. Biol. 319, 1097–1113 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Flaus, A., Martin, D.M., Barton, G.J. & Owen-Hughes, T. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 34, 2887–2905 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Clapier, C.R. & Cairns, B.R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Lorch, Y., Zhang, M. & Kornberg, R.D. Histone octamer transfer by a chromatin-remodeling complex. Cell 96, 389–392 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Bouazoune, K., Miranda, T.B., Jones, P.A. & Kingston, R.E. Analysis of individual remodeled nucleosomes reveals decreased histone-DNA contacts created by hSWI/SNF. Nucleic Acids Res. 37, 5279–5294 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ulyanova, N.P. & Schnitzler, G.R. Human SWI/SNF generates abundant, structurally altered dinucleosomes on polynucleosomal templates. Mol. Cell Biol. 25, 11156–11170 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bruno, M. et al. Histone H2A/H2B dimer exchange by ATP-dependent chromatin remodeling activities. Mol. Cell 12, 1599–1606 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Boeger, H., Griesenbeck, J. & Kornberg, R.D. Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription. Cell 133, 716–726 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Patel, A. et al. Decoupling nucleosome recognition from DNA binding dramatically alters the properties of the Chd1 chromatin remodeler. Nucleic Acids Res. 41, 1637–1648 (2013).Chd1 acquired SWI/SNF-like properties when its DBD was substituted for streptavidin, and the remodeler was targeted to nucleosomes through a biotin tag on histones. This result suggested that binding of the remodeler to linker DNA constrains nucleosome mobility and alters the specificity of the reaction.

    Article  CAS  PubMed  Google Scholar 

  11. Hennig, B.P., Bendrin, K., Zhou, Y. & Fischer, T. Chd1 chromatin remodelers maintain nucleosome organization and repress cryptic transcription. EMBO Rep. 13, 997–1003 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yadon, A.N. et al. Chromatin remodeling around nucleosome-free regions leads to repression of noncoding RNA transcription. Mol. Cell Biol. 30, 5110–5122 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shim, Y.S. et al. Hrp3 controls nucleosome positioning to suppress non-coding transcription in eu- and heterochromatin. EMBO J. 31, 4375–4387 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tirosh, I., Sigal, N. & Barkai, N. Widespread remodeling of mid-coding sequence nucleosomes by Isw1. Genome Biol. 11, R49 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cheung, V. et al. Chromatin- and transcription-related factors repress transcription from within coding regions throughout the Saccharomyces cerevisiae genome. PLoS Biol. 6, e277 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Struhl, K. & Segal, E. Determinants of nucleosome positioning. Nat. Struct. Mol. Biol. 20, 267–273 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wippo, C.J. et al. The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes. EMBO J. 30, 1277–1288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, Z. et al. A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science 332, 977–980 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gkikopoulos, T. et al. A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization. Science 333, 1758–1760 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pointner, J. et al. CHD1 remodelers regulate nucleosome spacing in vitro and align nucleosomal arrays over gene coding regions in S. pombe. EMBO J. 31, 4388–4403 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Korber, P. & Becker, P.B. Nucleosome dynamics and epigenetic stability. Essays Biochem. 48, 63–74 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Badis, G. et al. A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. Mol. Cell 32, 878–887 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fazzio, T.G. & Tsukiyama, T. Chromatin remodeling in vivo: evidence for a nucleosome sliding mechanism. Mol. Cell 12, 1333–1340 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Whitehouse, I. & Tsukiyama, T. Antagonistic forces that position nucleosomes in vivo. Nat. Struct. Mol. Biol. 13, 633–640 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Whitehouse, I., Rando, O.J., Delrow, J. & Tsukiyama, T. Chromatin remodelling at promoters suppresses antisense transcription. Nature 450, 1031–1035 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, N., Peterson, C.L. & Hayes, J.J. SWI/SNF- and RSC-catalyzed nucleosome mobilization requires internal DNA loop translocation within nucleosomes. Mol. Cell Biol. 31, 4165–4175 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Strohner, R. et al. A 'loop recapture' mechanism for ACF-dependent nucleosome remodeling. Nat. Struct. Mol. Biol. 12, 683–690 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Längst, G. & Becker, P.B. ISWI induces nucleosome sliding on nicked DNA. Mol. Cell 8, 1085–1092 (2001).

    Article  PubMed  Google Scholar 

  29. Bowman, G.D. Mechanisms of ATP-dependent nucleosome sliding. Curr. Opin. Struct. Biol. 20, 73–81 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, Y. et al. DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC. Mol. Cell 24, 559–568 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Lia, G. et al. Direct observation of DNA distortion by the RSC complex. Mol. Cell 21, 417–425 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aoyagi, S. & Hayes, J.J. hSWI/SNF-catalyzed nucleosome sliding does not occur solely via a twist-diffusion mechanism. Mol. Cell Biol. 22, 7484–7490 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aoyagi, S., Wade, P.A. & Hayes, J.J. Nucleosome sliding induced by the xMi-2 complex does not occur exclusively via a simple twist-diffusion mechanism. J. Biol. Chem. 278, 30562–30568 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Lorch, Y., Davis, B. & Kornberg, R.D. Chromatin remodeling by DNA bending, not twisting. Proc. Natl. Acad. Sci. USA 102, 1329–1332 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saha, A., Wittmeyer, J. & Cairns, B.R. Chromatin remodeling by RSC involves ATP-dependent DNA translocation. Genes Dev. 16, 2120–2134 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fan, H.Y., He, X., Kingston, R.E. & Narlikar, G.J. Distinct strategies to make nucleosomal DNA accessible. Mol. Cell 11, 1311–1322 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Whitehouse, I., Stockdale, C., Flaus, A., Szczelkun, M.D. & Owen-Hughes, T. Evidence for DNA translocation by the ISWI chromatin-remodeling enzyme. Mol. Cell Biol. 23, 1935–1945 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zofall, M., Persinger, J., Kassabov, S.R. & Bartholomew, B. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nat. Struct. Mol. Biol. 13, 339–346 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Saha, A., Wittmeyer, J. & Cairns, B.R. Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nat. Struct. Mol. Biol. 12, 747–755 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Schwanbeck, R., Xiao, H. & Wu, C. Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex. J. Biol. Chem. 279, 39933–39941 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Dang, W., Kagalwala, M.N. & Bartholomew, B. Regulation of ISW2 by concerted action of histone H4 tail and extranucleosomal DNA. Mol. Cell Biol. 26, 7388–7396 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dechassa, M.L. et al. Architecture of the SWI/SNF-nucleosome complex. Mol. Cell Biol. 28, 6010–6021 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Havas, K. et al. Generation of superhelical torsion by ATP-dependent chromatin remodeling activities. Cell 103, 1133–1142 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Richmond, T.J. & Davey, C.A. The structure of DNA in the nucleosome core. Nature 423, 145–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Tan, S. & Davey, C.A. Nucleosome structural studies. Curr. Opin. Struct. Biol. 21, 128–136 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Luger, K., Dechassa, M.L. & Tremethick, D.J. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat. Rev. Mol. Cell Biol. 13, 436–447 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mueller-Planitz, F., Klinker, H., Ludwigsen, J. & Becker, P.B. The ATPase domain of ISWI is an autonomous nucleosome remodeling machine. Nat. Struct. Mol. Biol. 20, 82–89 (2013).This quantitative study showed that the ATPase domain of ISWI is an autonomous, rudimentary nucleosome-remodeling machine. It can recognize and remodel nucleosomes, and its ATPase is properly regulated by the nucleosomal substrate.

    Article  CAS  PubMed  Google Scholar 

  48. Clapier, C.R. & Cairns, B.R. Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes. Nature 492, 280–284 (2012).Identified two autoinhibitory modules in the N and C termini of ISWI that regulate the enzyme. These inhibitory structures are released when the remodeler interacts with the histone H4 tail and extranucleosomal DNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Clapier, C.R., Langst, G., Corona, D.F., Becker, P.B. & Nightingale, K.P. Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol. Cell Biol. 21, 875–883 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bouazoune, K. & Kingston, R.E. Chromatin remodeling by the CHD7 protein is impaired by mutations that cause human developmental disorders. Proc. Natl. Acad. Sci. USA 109, 19238–19243 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hauk, G., McKnight, J.N., Nodelman, I.M. & Bowman, G.D. The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor. Mol. Cell 39, 711–723 (2010).This work presented the crystal structure of Chd1 comprising the NTR and ATPase domain and provided evidence that the NTR regulates the enzyme's ATPase activity by occluding its binding site for nucleic acids.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McKnight, J.N., Jenkins, K.R., Nodelman, I.M., Escobar, T. & Bowman, G.D. Extranucleosomal DNA binding directs nucleosome sliding by Chd1. Mol. Cell Biol. 31, 4746–4759 (2011).Sequence-specific DBDs of unrelated proteins could substitute for the DBD of Chd1, a result suggesting that the DBD and ATPase domains can function as independent modules. Notably, the chimeric remodeler shifted nucleosomes towards and onto the corresponding DNA consensus site.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Grüne, T. et al. Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol. Cell 12, 449–460 (2003).

    Article  PubMed  Google Scholar 

  54. Ryan, D.P., Sundaramoorthy, R., Martin, D., Singh, V. & Owen-Hughes, T. The DNA-binding domain of the Chd1 chromatin-remodelling enzyme contains SANT and SLIDE domains. EMBO J. 30, 2596–2609 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pinskaya, M., Nair, A., Clynes, D., Morillon, A. & Mellor, J. Nucleosome remodeling and transcriptional repression are distinct functions of Isw1 in Saccharomyces cerevisiae. Mol. Cell Biol. 29, 2419–2430 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dechassa, M.L. et al. Disparity in the DNA translocase domains of SWI/SNF and ISW2. Nucleic Acids Res. 40, 4412–4421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hall, M.A. et al. High-resolution dynamic mapping of histone-DNA interactions in a nucleosome. Nat. Struct. Mol. Biol. 16, 124–129 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hota, S.K. et al. Nucleosome mobilization by ISW2 requires the concerted action of the ATPase and SLIDE domains. Nat. Struct. Mol. Biol. 20, 222–229 (2013).Showed that interactions of Isw2 with extranucleosomal DNA promote nucleosome mobilization. The authors resolved several nonsimultaneous structural changes within the nucleosome well before its being shifted to a new DNA location.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Deindl, S. et al. ISWI remodelers slide nucleosomes with coordinated multi-base-pair entry steps and single-base-pair exit steps. Cell 152, 442–452 (2013).Single-molecule fluorescence resonance energy transfer experiments revealed the succession of events during nucleosome sliding by ISWI remodelers in unprecedented detail: the remodelers extruded several base pairs of DNA in single-base-pair increments from the nucleosome before adjacent DNA entered from the opposite end.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ha, T., Kozlov, A.G. & Lohman, T.M. Single-molecule views of protein movement on single-stranded DNA. Annu. Rev. Biophys. 41, 295–319 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lorch, Y., Maier-Davis, B. & Kornberg, R.D. Mechanism of chromatin remodeling. Proc. Natl. Acad. Sci. USA 107, 3458–3462 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chaban, Y. et al. Structure of a RSC-nucleosome complex and insights into chromatin remodeling. Nat. Struct. Mol. Biol. 15, 1272–1277 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Böhm, V. et al. Nucleosome accessibility governed by the dimer/tetramer interface. Nucleic Acids Res. 39, 3093–3102 (2011).

    Article  PubMed  CAS  Google Scholar 

  64. Gangaraju, V.K., Prasad, P., Srour, A., Kagalwala, M.N. & Bartholomew, B. Conformational changes associated with template commitment in ATP-dependent chromatin remodeling by ISW2. Mol. Cell 35, 58–69 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ryan, D.P. & Owen-Hughes, T. Snf2-family proteins: chromatin remodellers for any occasion. Curr. Opin. Chem. Biol. 15, 649–656 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dang, W. & Bartholomew, B. Domain architecture of the catalytic subunit in the ISW2-nucleosome complex. Mol. Cell Biol. 27, 8306–8317 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yamada, K. et al. Structure and mechanism of the chromatin remodelling factor ISW1a. Nature 472, 448–453 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Sen, P. et al. The SnAC domain of SWI/SNF is a histone anchor required for remodeling. Mol. Cell Biol. 33, 360–370 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Patel, A., McKnight, J.N., Genzor, P. & Bowman, G.D. Identification of residues in Chromodomain helicase dna-binding protein 1 (Chd1) required for coupling atp hydrolysis to nucleosome sliding. J. Biol. Chem. 286, 43984–43993 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lewis, R., Durr, H., Hopfner, K.P. & Michaelis, J. Conformational changes of a Swi2/Snf2 ATPase during its mechano-chemical cycle. Nucleic Acids Res. 36, 1881–1890 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Forne, I., Ludwigsen, J., Imhof, A., Becker, P.B. & Mueller-Planitz, F. Probing the conformation of the ISWI ATPase domain with genetically encoded photoreactive crosslinkers and mass spectrometry. Mol. Cell Proteomics 11, M111 012088 (2012).

    Article  PubMed  CAS  Google Scholar 

  72. Clapier, C.R., Nightingale, K.P. & Becker, P.B. A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI. Nucleic Acids Res. 30, 649–655 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hamiche, A., Kang, J.G., Dennis, C., Xiao, H. & Wu, C. Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF. Proc. Natl. Acad. Sci. USA 98, 14316–14321 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fan, H.Y., Trotter, K.W., Archer, T.K. & Kingston, R.E. Swapping function of two chromatin remodeling complexes. Mol. Cell 17, 805–815 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Eberharter, A. et al. Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling. EMBO J. 20, 3781–3788 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Eberharter, A., Vetter, I., Ferreira, R. & Becker, P.B. ACF1 improves the effectiveness of nucleosome mobilization by ISWI through PHD-histone contacts. EMBO J. 23, 4029–4039 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Watson, A.A. et al. The PHD and Chromo domains regulate the ATPase activity of the human chromatin remodeler CHD4. J. Mol. Biol. 422, 3–17 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. He, X., Fan, H.Y., Narlikar, G.J. & Kingston, R.E. Human ACF1 alters the remodeling strategy of SNF2h. J. Biol. Chem. 281, 28636–28647 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Hargreaves, D.C. & Crabtree, G.R. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 21, 396–420 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sims, H.I., Lane, J.M., Ulyanova, N.P. & Schnitzler, G.R. Human SWI/SNF drives sequence-directed repositioning of nucleosomes on C-myc promoter DNA minicircles. Biochemistry 46, 11377–11388 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Rippe, K. et al. DNA sequence- and conformation-directed positioning of nucleosomes by chromatin-remodeling complexes. Proc. Natl. Acad. Sci. USA 104, 15635–15640 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. van Vugt, J.J. et al. Multiple aspects of ATP-dependent nucleosome translocation by RSC and Mi-2 are directed by the underlying DNA sequence. PLoS ONE 4, e6345 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Floer, M. et al. A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding. Cell 141, 407–418 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang, J.G., Madrid, T.S., Sevastopoulos, E. & Narlikar, G.J. The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing. Nat. Struct. Mol. Biol. 13, 1078–1083 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Gangaraju, V.K. & Bartholomew, B. Dependency of ISW1a chromatin remodeling on extranucleosomal DNA. Mol. Cell Biol. 27, 3217–3225 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kagalwala, M.N., Glaus, B.J., Dang, W., Zofall, M. & Bartholomew, B. Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J. 23, 2092–2104 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Stockdale, C., Flaus, A., Ferreira, H. & Owen-Hughes, T. Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes. J. Biol. Chem. 281, 16279–16288 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Zentner, G.E., Tsukiyama, T. & Henikoff, S. ISWI and CHD chromatin remodelers bind promoters but act in gene bodies. PLoS Genet. 9, e1003317 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gossett, A.J. & Lieb, J.D. In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae. PLoS Genet. 8, e1002771 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dechassa, M.L. et al. SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes. Mol. Cell 38, 590–602 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ballaré, C. et al. Nucleosome-driven transcription factor binding and gene regulation. Mol. Cell 49, 67–79 (2013).

    Article  PubMed  CAS  Google Scholar 

  92. Engeholm, M. et al. Nucleosomes can invade DNA territories occupied by their neighbors. Nat. Struct. Mol. Biol. 16, 151–158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lorch, Y., Griesenbeck, J., Boeger, H., Maier-Davis, B. & Kornberg, R.D. Selective removal of promoter nucleosomes by the RSC chromatin-remodeling complex. Nat. Struct. Mol. Biol. 18, 881–885 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Racki, L.R. et al. The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes. Nature 462, 1016–1021 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Blosser, T.R., Yang, J.G., Stone, M.D., Narlikar, G.J. & Zhuang, X. Dynamics of nucleosome remodelling by individual ACF complexes. Nature 462, 1022–1027 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lusser, A., Urwin, D.L. & Kadonaga, J.T. Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nat. Struct. Mol. Biol. 12, 160–166 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work on nucleosome remodeling in the laboratories of F.M.-P. and P.B.B. is supported by the Deutsche Forschungsgemeinschaft through SFB 594 as well as grants MU3613/1-1, BE1140/6 and BE1140/7.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Felix Mueller-Planitz or Peter B Becker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller-Planitz, F., Klinker, H. & Becker, P. Nucleosome sliding mechanisms: new twists in a looped history. Nat Struct Mol Biol 20, 1026–1032 (2013). https://doi.org/10.1038/nsmb.2648

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2648

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing