Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TRF2 functions as a protein hub and regulates telomere maintenance by recognizing specific peptide motifs

Abstract

In mammalian cells, the telomeric repeat binding factor (TRF) homology (TRFH) domain–containing telomeric proteins TRF1 and TRF2 associate with a collection of molecules necessary for telomere maintenance and cell-cycle progression. However, the specificity and the mechanisms by which TRF2 communicates with different signaling pathways remain largely unknown. Using oriented peptide libraries, we demonstrate that the TRFH domain of human TRF2 recognizes [Y/F]XL peptides with the consensus motif YYHKYRLSPL. Disrupting the interactions between the TRF2 TRFH domain and its targets resulted in telomeric DNA-damage responses. Furthermore, our genome-wide target analysis revealed phosphatase nuclear targeting subunit (PNUTS) and microcephalin 1 (MCPH1) as previously unreported telomere-associated proteins that directly interact with TRF2 via the [Y/F]XL motif. PNUTS and MCPH1 can regulate telomere length and the telomeric DNA-damage response, respectively. Our findings indicate that an array of TRF2 molecules functions as a protein hub and regulates telomeres by recruiting different signaling molecules via a linear sequence code.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The TRFH domain of TRF2 recognizes short peptide sequences.
Figure 2: The TRF2-[YF]XL interaction is important for telomere maintenance.
Figure 3: TRF2 specifically interacts with YXL-containing proteins PNUTS and MCPH1.
Figure 4: TRF2 interacts with PNUTS and MCPH1 through the YXL motif.
Figure 5: MCPH1 and PNUTS regulate DNA-damage response and telomere length, respectively, at the telomeres.

Similar content being viewed by others

References

  1. Blackburn, E.H. Switching and signaling at the telomere. Cell 106, 661–673 (2001).

    Article  CAS  Google Scholar 

  2. Hackett, J.A. & Greider, C.W. Balancing instability: dual roles for telomerase and telomere dysfunction in tumorigenesis. Oncogene 21, 619–626 (2002).

    Article  CAS  Google Scholar 

  3. Granger, M.P., Wright, W.E. & Shay, J.W. Telomerase in cancer and aging. Crit. Rev. Oncol. Hematol. 41, 29–40 (2002).

    Article  Google Scholar 

  4. Harrington, L. & Robinson, M.O. Telomere dysfunction: multiple paths to the same end. Oncogene 21, 592–597 (2002).

    Article  CAS  Google Scholar 

  5. Collins, K. & Mitchell, J.R. Telomerase in the human organism. Oncogene 21, 564–579 (2002).

    Article  CAS  Google Scholar 

  6. Maser, R.S. & DePinho, R.A. Connecting chromosomes, crisis, and cancer. Science 297, 565–569 (2002).

    Article  CAS  Google Scholar 

  7. Hahn, W.C. & Weinberg, R.A. Modelling the molecular circuitry of cancer. Nat. Rev. Cancer 2, 331–341 (2002).

    Article  CAS  Google Scholar 

  8. Blasco, M.A. Mammalian telomeres and telomerase: why they matter for cancer and aging. Eur. J. Cell Biol. 82, 441–446 (2003).

    Article  CAS  Google Scholar 

  9. Cech, T.R. Beginning to understand the end of the chromosome. Cell 116, 273–279 (2004).

    Article  CAS  Google Scholar 

  10. Henderson, E., Hardin, C.C., Walk, S.K., Tinoco Jr, I. & Blackburn, E.H. Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs. Cell 51, 899–908 (1987).

    Article  CAS  Google Scholar 

  11. de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005).

    Article  CAS  Google Scholar 

  12. Songyang, Z. & Liu, D. Inside the mammalian telomere interactome: regulation and regulatory activities of telomeres. Crit. Rev. Eukaryot. Gene Expr. 16, 103–118 (2006).

    Article  Google Scholar 

  13. Broccoli, D., Smogorzewska, A., Chong, L. & de Lange, T. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat. Genet. 17, 231–235 (1997).

    Article  CAS  Google Scholar 

  14. Bilaud, T. et al. Telomeric localization of TRF2, a novel human telobox protein. Nat. Genet. 17, 236–239 (1997).

    Article  CAS  Google Scholar 

  15. Verdun, R.E. & Karlseder, J. Replication and protection of telomeres. Nature 447, 924–931 (2007).

    Article  CAS  Google Scholar 

  16. Iwano, T., Tachibana, M., Reth, M. & Shinkai, Y. Importance of TRF1 for functional telomere structure. J. Biol. Chem. 279, 1442–1448 (2004).

    Article  CAS  Google Scholar 

  17. Celli, G.B. & de Lange, T. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat. Cell Biol. 7, 712–718 (2005).

    Article  CAS  Google Scholar 

  18. Takai, H., Smogorzewska, A. & de Lange, T. DNA damage foci at dysfunctional telomeres. Curr. Biol. 13, 1549–1556 (2003).

    Article  CAS  Google Scholar 

  19. Denchi, E.L. & de Lange, T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448, 1068–1071 (2007).

    Article  CAS  Google Scholar 

  20. Wang, R.C., Smogorzewska, A. & de Lange, T. Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 119, 355–368 (2004).

    Article  CAS  Google Scholar 

  21. van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401–413 (1998).

    Article  CAS  Google Scholar 

  22. van Overbeek, M. & de Lange, T. Apollo, an Artemis-related nuclease, interacts with TRF2 and protects human telomeres in S phase. Curr. Biol. 16, 1295–1302 (2006).

    Article  CAS  Google Scholar 

  23. Lenain, C. et al. The Apollo 5′ exonuclease functions together with TRF2 to protect telomeres from DNA repair. Curr. Biol. 16, 1303–1310 (2006).

    Article  CAS  Google Scholar 

  24. Chen, Y. et al. A shared docking motif in TRF1 and TRF2 used for differential recruitment of telomeric proteins. Science 319, 1092–1096 (2008).

    Article  CAS  Google Scholar 

  25. Songyang, Z. et al. SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778 (1993).

    Article  CAS  Google Scholar 

  26. Songyang, Z. Recognition and regulation of primary-sequence motifs by signaling modular domains. Prog. Biophys. Mol. Biol. 71, 359–372 (1999).

    Article  CAS  Google Scholar 

  27. Yaffe, M.B. et al. A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat. Biotechnol. 19, 348–353 (2001).

    Article  CAS  Google Scholar 

  28. d'Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    Article  CAS  Google Scholar 

  29. Karlseder, J., Broccoli, D., Dai, Y., Hardy, S. & de Lange, T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283, 1321–1325 (1999).

    Article  CAS  Google Scholar 

  30. Liu, D., O'Connor, M.S., Qin, J. & Songyang, Z. Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. J. Biol. Chem. 279, 51338–51342 (2004).

    Article  CAS  Google Scholar 

  31. O'Connor, M.S., Safari, A., Liu, D., Qin, J. & Songyang, Z. The human Rap1 protein complex and modulation of telomere length. J. Biol. Chem. 279, 28585–28591 (2004).

    Article  CAS  Google Scholar 

  32. Hu, C.D. & Kerppola, T.K. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat. Biotechnol. 21, 539–545 (2003).

    Article  CAS  Google Scholar 

  33. Chen, L.Y., Liu, D. & Songyang, Z. Telomere maintenance through spatial control of telomeric proteins. Mol. Cell. Biol. 27, 5898–5909 (2007).

    Article  CAS  Google Scholar 

  34. Allen, P.B., Kwon, Y.G., Nairn, A.C. & Greengard, P. Isolation and characterization of PNUTS, a putative protein phosphatase 1 nuclear targeting subunit. J. Biol. Chem. 273, 4089–4095 (1998).

    Article  CAS  Google Scholar 

  35. Lin, S.Y., Rai, R., Li, K., Xu, Z.X. & Elledge, S.J. BRIT1/MCPH1 is a DNA damage responsive protein that regulates the Brca1-Chk1 pathway, implicating checkpoint dysfunction in microcephaly. Proc. Natl. Acad. Sci. USA 102, 15105–15109 (2005).

    Article  CAS  Google Scholar 

  36. Rai, R. et al. BRIT1 regulates early DNA damage response, chromosomal integrity, and cancer. Cancer Cell 10, 145–157 (2006).

    Article  CAS  Google Scholar 

  37. Alderton, G.K. et al. Regulation of mitotic entry by microcephalin and its overlap with ATR signalling. Nat. Cell Biol. 8, 725–733 (2006).

    Article  CAS  Google Scholar 

  38. Wood, J.L., Singh, N., Mer, G. & Chen, J. MCPH1 functions in an H2AX-dependent but MDC1-independent pathway in response to DNA damage. J. Biol. Chem. 282, 35416–35423 (2007).

    Article  CAS  Google Scholar 

  39. O'Connor, M.S., Safari, A., Xin, H., Liu, D. & Songyang, Z. A critical role for TPP1 and TIN2 interaction in high-order telomeric complex assembly. Proc. Natl. Acad. Sci. USA 103, 11874–11879 (2006).

    Article  CAS  Google Scholar 

  40. Xin, H. et al. TPP1 is a homologue of ciliate TEBP-β and interacts with POT1 to recruit telomerase. Nature 445, 559–562 (2007).

    Article  CAS  Google Scholar 

  41. Bae, N.S. & Baumann, P.A. RAP1/TRF2 complex inhibits nonhomologous end-joining at human telomeric DNA ends. Mol. Cell 26, 323–334 (2007).

    Article  CAS  Google Scholar 

  42. Price, C.M. wRAPing up the end to prevent telomere fusions. Mol. Cell 26, 463–464 (2007).

    Article  CAS  Google Scholar 

  43. Kim, H., Chen, J. & Yu, X. Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science 316, 1202–1205 (2007).

    Article  CAS  Google Scholar 

  44. Songyang, Z. & Cantley, L.C. The use of peptide library for the determination of kinase peptide substrates. Methods Mol. Biol. 87, 87–98 (1998).

    CAS  PubMed  Google Scholar 

  45. Liu, D. et al. PTOP interacts with POT1 and regulates its localization to telomeres. Nat. Cell Biol. 6, 673–680 (2004).

    Article  CAS  Google Scholar 

  46. Mendez, J. & Stillman, B. Chromatin association of human origin recognition complex, Cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol. Cell. Biol. 20, 8602–8612 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S.Y. Jung and Q. He for technical help and M. Lei (University of Michigan) for the GST-TRF2TRFH fusion proteins. We thank J. Pennington and T. Palzkill for peptide synthesis. Work in the laboratories of Z.S. and D.L. is supported by awards from the US National Institutes of Health, the US Department of Defense, American Heart Association, the Welch foundation and the American Cancer Society. Z.S. is funded by the Leukemia and Lymphoma Society.

Author information

Authors and Affiliations

Authors

Contributions

H.K., O.-H.L., H.X. and L.-Y.C. designed and performed most of the experiments; D.L. and J.Q. did the telomere length and MS experiment, respectively; A.S. and H.K.C. provided technical support. S.-Y.L. provided the MCHP1 reagents; D.L. and Z.S. wrote the paper.

Corresponding author

Correspondence to Zhou Songyang.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 1320 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Lee, OH., Xin, H. et al. TRF2 functions as a protein hub and regulates telomere maintenance by recognizing specific peptide motifs. Nat Struct Mol Biol 16, 372–379 (2009). https://doi.org/10.1038/nsmb.1575

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1575

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing