Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria

Key Points

  • Porin modification is a major bacterial resistance strategy that restricts the influx of β-lactam and fluoroquinolone antibiotics.

  • Clinical multidrug resistant enterobacterial isolates that exhibit modified membrane permeability are highly prevalent.

  • Interactions between antibiotic molecules and porin channels govern translocation efficiency.

  • New physico-chemical techniques are being developed to assess drug–channel interactions and to quantify translocation through porins.

  • Computer modelling of the pathway of substrates through porins provides information on the orientation and interaction of substrates in the channel.

  • Quantification of antibiotic translocation provides new insights into how to optimize drug molecules so that they have sufficient permeation rates to circumvent multidrug resistance mechanisms.

Abstract

Gram-negative bacteria are responsible for a large proportion of antibiotic-resistant bacterial diseases. These bacteria have a complex cell envelope that comprises an outer membrane and an inner membrane that delimit the periplasm. The outer membrane contains various protein channels, called porins, which are involved in the influx of various compounds, including several classes of antibiotics. Bacterial adaptation to reduce influx through porins is an increasing problem worldwide that contributes, together with efflux systems, to the emergence and dissemination of antibiotic resistance. An exciting challenge is to decipher the genetic and molecular basis of membrane impermeability as a bacterial resistance mechanism. This Review outlines the bacterial response towards antibiotic stress on altered membrane permeability and discusses recent advances in molecular approaches that are improving our knowledge of the physico-chemical parameters that govern the translocation of antibiotics through porin channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multidrug resistance mechanisms associated with porin modification.
Figure 2: Liposome swelling assay.
Figure 3: Antibiotic docking to porin channels.

Similar content being viewed by others

References

  1. Rice, L. B. Emerging issues in the management of infections caused by multidrug-resistant gram-negative bacteria. Cleve Clin. J. Med. 74, S12–S20 (2007).

    Article  PubMed  Google Scholar 

  2. Blot, S., Depuydt, P., Vandewoude, K. & De Bacquer, D. Measuring the impact of multidrug resistance in nosocomial infection. Curr. Opin. Infect. Dis. 20, 391–396 (2007).

    Article  PubMed  Google Scholar 

  3. Sheridan, C. Antiinfective biotechs face partnering gap. Nature Biotechnol. 23, 155–156 (2005).

    Article  CAS  Google Scholar 

  4. Norrby, S. R., Nord, C. E. & Finch, R. Lack of development of new antimicrobial drugs: a potential serious threat to public health. Lancet Infect. Dis. 5, 115–119 (2005).

    Article  PubMed  Google Scholar 

  5. Li, X. Z. & Nikaido, H. Efflux-mediated drug resistance in bacteria. Drugs 64, 159–204 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Davin-Regli, A. et al. Membrane permeability and regulation of drug “influx and efflux” in enterobacterial pathogens. Curr. Drug Targets 9, 750–759 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Piddock, L. J. Multidrug-resistance efflux pumps — not just for resistance. Nature Rev. Microbiol. 4, 629–636 (2006).

    Article  CAS  Google Scholar 

  8. Poole, K. Efflux-mediated antimicrobial resistance. J. Antimicrob. Chemother. 56, 20–51 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Delcour, A. H. Solute uptake through general porins. Front. Biosci. 8, D1055–D1071 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Schulz, G. E. The structure of bacterial outer membrane proteins. Biochim. Biophys. Acta 1565, 308–317 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Koebnik, R., Locher, K. P. & Van Gelder, P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol. Microbiol. 37, 239–253 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Guillier, M., Gottesman, S. & Storz, G. Modulating the outer membrane with small RNAs. Genes Dev. 20, 2338–2348 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Pagès, J.-M. Role of bacterial porins in antibiotic susceptibility of Gram-negative bacteria in Bacterial and Eukaryotic Porins (ed. Benz, R.) 41–59 (Wiley-VCH, Weinheim,2004).

    Google Scholar 

  15. Davin-Régli, A. & Pagès, J.-M. in Antimicrobial Resistance in Bacteria (ed. Zmabiles-Cuevos, C. F.) 55–75 (Horizon Biosciences, Norfolk, 2006)

    Google Scholar 

  16. Bryskier, A. (ed.) Antimicrobial Agents: Antibacterials and Antifungals (ASM Press, Washington, 2005).

    Book  Google Scholar 

  17. Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A. & Collins, J. J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Nestorovich, E. M., Sugawara, E., Nikaido, H. & Bezrukov, S. M. Pseudomonas aeruginosa porin OprF. Properties of the channel. J. Biol. Chem. 281, 16230–16237 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Sugawara, E., Nestorovich .E. M., Bezrukov, S. M. & Nikaido, H. Pseudomonas aeruginosa porin OprF exists in two different conformations. J. Biol. Chem. 281, 16220–16229 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Hancock, R. E. & Brinkman, F. S. Function of Pseudomonas porins in uptake and efflux. Annu. Rev. Microbiol. 56, 17–38 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Nikaido, H. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob. Agents Chemother. 33, 1831–1836 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hasdemir, U. O., Chevalier, J., Nordmann, P. & Pagès, J.-M. Detection and prevalence of active drug efflux mechanism in various multidrug-resistant Klebsiella pneumoniae strains from Turkey. J. Clin. Microbiol. 42, 2701–2706 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Doménech-Sánchez, A. et al. Role of Klebsiella pneumoniae OmpK35 porin in antimicrobial resistance. Antimicrob. Agents Chemother. 47, 3332–3335 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hernández-Allés, S. et al. Relationship between outer membrane alterations and susceptibility to antimicrobial agents in isogenic strains of Klebsiella pneumoniae. J. Antimicrob. Chemother. 46, 273–277 (2000).

    Article  PubMed  Google Scholar 

  25. Martínez-Martínez, L. et al. Energy-dependent accumulation of norfloxacin and porin expression in clinical isolates of Klebsiella pneumoniae and relationship to extended-spectrum β-lactamase production. Antimicrob. Agents Chemother. 46, 3926–3932 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jacoby, G. A., Mills, D. M. & Chow, N. Role of β-lactamases and porins in resistance to ertapenem and other β-lactams in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 48, 3203–3206 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaczmarek, F. M., Dib-Hajj, F., Shang, W. & Gootz, T. D. High-level carbapenem resistance in a Klebsiella pneumoniae clinical isolate is due to the combination of bla(ACT-1) β-lactamase production, porin OmpK35/36 insertional inactivation, and down-regulation of the phosphate transport porin phoe. Antimicrob. Agents Chemother. 50, 3396–3406 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mena, A. et al. Characterization of a large outbreak by CTX-M-1-producing Klebsiella pneumoniae and mechanisms leading to in vivo carbapenem resistance development. J. Clin. Microbiol. 44, 2831–2837 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Loli, A. et al. Sources of diversity of carbapenem resistance levels in Klebsiella pneumoniae carrying blaVIM-1. J. Antimicrob. Chemother. 58, 669–672 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Elliott, E. et al. In vivo development of ertapenem resistance in a patient with pneumonia caused by Klebsiella pneumoniae with an extended-spectrum β-lactamase. Clin. Infect. Dis. 42, e95–e98 (2006).

    Article  PubMed  Google Scholar 

  31. Medeiros, A. A., O'Brien, T. F., Rosenberg, E. Y. & Nikaido, H. Loss of OmpC porin in a strain of Salmonella typhimurium causes increased resistance to cephalosporins during therapy. J. Infect. Dis. 156, 751–757 (1987).

    Article  CAS  PubMed  Google Scholar 

  32. Yoshimura, F. & Nikaido, H. Diffusion of β-lactam antibiotics through the porin channels of Escherichia coli K-12. Antimicrob. Agents Chemother. 27, 84–92 (1985). The first complete study on the diffusion rate of β-lactam molecules through E. coli porins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ferenci, T. Maintaining a healthy SPANC balance through regulatory and mutational adaptation. Mol. Microbiol. 57, 1–8 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Prilipov, A., Phale, P. S., Koebnik, R., Widmer, C. & Rosenbusch, J. P. Identification and characterization of two quiescent porin genes, nmpC and ompN, in Escherichia coli BE. J. Bacteriol. 180, 3388–3392 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Doménech-Sánchez, A., Hernández-Allés, S., Martínez-Martínez, L., Benedí, V. J. & Albertí, S. Identification and characterization of a new porin gene of Klebsiella pneumoniae: its role in β-lactam antibiotic resistance. J. Bacteriol. 181, 2726–2732 (1999).

    PubMed  PubMed Central  Google Scholar 

  36. Bornet, C., Davin-Régli, A., Bosi, C., Pagès, J.-M. & Bollet, C. Imipenem resistance of Enterobacter aerogenes mediated by outer membrane permeability. J. Clin. Microbiol. 38, 1048–1052 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bosi, C. et al. Most Enterobacter aerogenes strains in France belong to a prevalent clone. Clin. Microbiol. 37, 2165–2169 (1999).

    CAS  Google Scholar 

  38. Bornet, C. et al. Imipenem and expression of multidrug efflux pump in Enterobacter aerogenes. Biochem. Biophys. Res. Commun. 301, 985–990 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Charrel, R. N., Pagès, J.-M., De Micco, P. & Malléa, M. Prevalence of outer membrane porin alteration in β-lactam-antibiotic-resistant Enterobacter aerogenes. Antimicrob. Agents Chemother. 40, 2854–2858 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thiolas, A., Bollet, C., La Scola, B., Raoult, D. & Pagès, J.-M. Successive emergence of Enterobacter aerogenes strains resistant to imipenem and colistin in a patient. Antimicrob. Agents Chemother. 49, 1354–1358 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Szabó, D. et al. Outer membrane protein changes and efflux pump expression together may confer resistance to ertapenem in Enterobacter cloacae. Antimicrob. Agents Chemother. 50, 2833–2835 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Randall, L. P. & Woodward, M. J. The multiple antibiotic resistance (mar) locus and its significance. Res. Vet. Sci. 72, 87–93 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Hernández-Allés, S. et al. Development of resistance during antimicrobial therapy caused by insertion sequence interruption of porin genes. Antimicrob. Agents Chemother. 43, 937–939 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mena, A. et al. Characterization of a large outbreak by CTX-M-1-producing Klebsiella pneumoniae and mechanisms leading to in vivo carbapenem resistance development. J. Clin. Microbiol. 44, 2831–2837 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cai, J. C., Zhou, H. W., Zhang, R. & Chen, G. X. Emergence of Serratia marcescens, Klebsiella pneumoniae, and Escherichia coli isolates possessing the plasmid-mediated carbapenem-hydrolyzing β-lactamase KPC-2 in intensive care units of a Chinese hospital. Antimicrob. Agents Chemother. 52, 2014–2018 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Simonet, V., Malléa, M., Fourel, D., Bolla, J. M. & Pagès, J.-M. Crucial domains are conserved in Enterobacteriaceae porins. FEMS Microbiol. Lett. 136, 91–97 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Low, A. S., MacKenzie, F. M., Gould, I. M. & Booth, I. R. Protected environments allow parallel evolution of a bacterial pathogen in a patient subjected to long-term antibiotic therapy. Mol. Microbiol. 42, 619–630 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Malléa, M. et al. Porin alteration and active efflux: two in vivo drug resistance strategies used by Enterobacter aerogenes. Microbiology 144, 3003–3009 (1998).

    Article  PubMed  Google Scholar 

  49. Dé, E. et al. A new mechanism of antibiotic resistance in Enterobacteriaceae induced by a structural modification of the major porin. Mol. Microbiol. 41, 189–198 (2001). The first description of a clinical isolate with a mutation in internal loop 3.

    Article  PubMed  Google Scholar 

  50. Jeanteur, D. et al. Structural and functional alterations of a colicin-resistant mutant of OmpF porin from Escherichia coli. Proc. Natl Acad. Sci. USA 91, 10675–10679 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Simonet, V., Malléa, M. & Pagès, J.-M. Substitutions in the eyelet region disrupt cefepime diffusion through the Escherichia coli OmpF channel. Antimicrob. Agents Chemother. 44, 311–315 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thiolas, A., Bornet, C., Davin-Régli, A., Pagès, J.-M. & Bollet, C. Resistance to imipenem, cefepime, and cefpirome associated with mutation in Omp36 osmoporin of Enterobacter aerogenes. Biochem. Biophys. Res. Commun. 317, 851–856 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Chevalier, J., Pagès, J.-M. & Malléa, M. In vivo modification of porin activity conferring antibiotic resistance to Enterobacter aerogenes. Biochem. Biophys. Res. Commun. 266, 248–251 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Olesky, M., Hobbs, M. & Nicholas, R. A. Identification and analysis of amino acid mutations in porin IB that mediate intermediate-level resistance to penicillin and tetracycline in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 46, 2811–2820 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Olesky, M., Zhao, S., Rosenberg, R. L. & Nicholas, R. A. Porin-mediated antibiotic resistance in Neisseria gonorrhoeae: ion, solute, and antibiotic permeation through PIB proteins with penB mutations. J. Bacteriol. 188, 2300–2308 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Veal, W. L., Nicholas, R. A. & Shafer, W. M. Overexpression of the MtrC–MtrD–MtrE efflux pump due to an MtrR mutation is required for chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. J. Bacteriol. 184, 5619–5624 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shafer, W. M. & Folster, J. P. Towards an understanding of chromosomally mediated penicillin resistance in Neisseria gonorrhoeae: evidence for a porin-efflux pump collaboration. J. Bacteriol. 188, 2297–2299 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ochs, M. M., Bains, M. & Hancock, R. E. Role of putative loops 2 and 3 in imipenem passage through the specific porin OprD of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 44, 1983–1985 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wolter, D. J., Hanson, N. D. & Lister, P. D. Insertional inactivation of oprD in clinical isolates of Pseudomonas aeruginosa leading to carbapenem resistance. FEMS Microbiol. Lett. 236, 137–143 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Epp, S. F. et al. C-terminal region of Pseudomonas aeruginosa outer membrane porin OprD modulates susceptibility to meropenem. Antimicrob. Agents Chemother. 45, 1780–1787 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Biswas, S., Mohammad, M. M., Patel, D. R., Movileanu, L. & van den Berg, B. Structural insight into OprD substrate specificity. Nature Struct. Mol. Biol. 14, 1108–1109 (2007).

    Article  CAS  Google Scholar 

  62. El Amin, N. et al. Carbapenem resistance mechanisms in Pseudomonas aeruginosa: alterations of porin OprD and efflux proteins do not fully explain resistance patterns observed in clinical isolates. APMIS 113, 187–196 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Luckey, M. & Nikaido, H. Specificity of diffusion channels produced by λ phage receptor protein of Escherichia coli. Proc. Natl Acad. Sci. USA 77, 167–171 (1980).

    Article  CAS  PubMed  Google Scholar 

  64. Nikaido, H. & Rosenberg, E. Y. Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins. J. Bacteriol. 153, 241–252 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rodrigues, C., Gameiro, P., Prieto, M. & de Castro, B. Interaction of rifampicin and isoniazid with large unilamellar liposomes: spectroscopic location studies. Biochimica Biophysica Acta 1620, 151–159 (2003).

    Article  CAS  Google Scholar 

  66. Cowan, S. W. et al. Crystal structures explain functional properties of two E. coli porins. Nature 358, 727–733 (1992). The three-dimensional structures of OmpF and PhoE explained the channel properties of E. coli porins.

    Article  CAS  PubMed  Google Scholar 

  67. Baslé, A., Rummel, G., Storici, P., Rosenbusch, J. P. & Schirmer, T. Crystal structure of osmoporin OmpC from E. coli at 2A. J. Mol. Biol. 362, 933–942 (2006). Reported the three-dimensional structure of E. coli OmpC porin.

    Article  CAS  PubMed  Google Scholar 

  68. Danelon, C., Nestrovich, E. M., Winterhalter, M., Ceccarelli, M. & Bezrukov, S. M. Interaction of zwitterionic penicillins with the OmpF channel facilitates their translocation. Biophys. J. 90, 1617–1627 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Nestorovich, E. M., Danelon, C., Winterhalter, M. & Bezrukov, S. M. Designed to penetrate: time-resolved interaction of single antibiotic molecules with bacterial pores. Proc. Natl Acad. Sci. USA 99, 9789–9794 (2002). The first characterization of the β-lactam permeation through OmpF on a single molecular level.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Danelon, C., Brando, T. & Winterhalter, M. Probing the orientation of reconstituted maltoporin channels at the single-protein level. J. Biol. Chem. 278, 35542–35551 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Kullman, L, Winterhalter, M. & Bezrukov, S. M. Transport of maltodextrins through maltoporin. A single-channel study. Biophys. J. 82, 803–812 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bezrukov, S. M. & Winterhalter, M. Examining noise sources at the single-molecule level: 1/f noise of an open maltoporin channel. Phys. Rev. Lett. 85, 202–205 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Nekolla, S., Andersen, C. & Benz, R. Noise analysis of ion current through the open and the sugar-induced closed state of the LamB channel of Escherichia coli outer membrane: evaluation of the sugar binding kinetics to the channel interior Biophys. J. 66, 1388–1397 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schwarz, G., Danelon, C. & Winterhalter, M. On translocation through a membrane channel via an internal binding site: kinetics and voltage dependence. Biophy. J. 84, 2990–2998 (2003).

    Article  CAS  Google Scholar 

  75. Vidal, S., Bredin, J., Pagès, J.-M. & Barbe, J. β-lactam screening by specific residues of the OmpF eyelet. J. Med. Chem. 48, 1395–1400 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Berezhkovskii, A. M. & Bezrukov, S. M. Optimizing transport of metabolites through large channels: molecular sieves with and without binding. Biophys. J. 88, L17–L19 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Bauer, W. R. & Nadler, W. Molecular transport through channels and pores: effects of in-channel interactions and blocking. Proc. Natl Acad. Sci. USA 103, 11446–11451 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bezrukov, S. M., Berezhkovskii, A. M. & Szabo, A. Diffusion model of solute dynamics in a membrane channel: mapping onto the two-site model and optimizing the flux. J. Chem. Phys. 127, 115101 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Ceccarelli, M., Danelon, C., Laio, A. & Parrinello, M. Microscopic mechanism of antibiotics translocation through a porin. Biophys. J. 87, 58–64 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Giuliodori, A. M., Gualerzi, C. O., Soto, S., Vila, J. & Tavío, M. M. Review on bacterial stress topics. Ann. NY Acad. Sci. 1113, 95–104 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Valentin-Hansen, P., Johansen, J. & Rasmussen, A. A. Small RNAs controlling outer membrane porins. Curr. Opin. Microbiol. 10, 152–155 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Viveiros, M. et al. Antibiotic stress, genetic response and altered permeability of E. coli. PLoS ONE 2, e365 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Baslé, A. & Delcour, A. H. Effect of two polyamine toxins on the bacterial porin OmpF. Biochem. Biophys. Res. Commun. 285, 550–554 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Iyer, R., Wu, Z., Woster, P. M. & Delcour, A. H. Molecular basis for the polyamine-ompF porin interactions: inhibitor and mutant studies. J. Mol. Biol. 297, 933–945 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Iyer, R. & Delcour, A. H. Complex inhibition of OmpF and OmpC bacterial porins by polyamines. J. Biol. Chem. 272, 18595–18601 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Vidal, S. et al. Computer simulation of spermine–porin channel interactions. In Vivo 16, 111–116 (2002).

    CAS  PubMed  Google Scholar 

  87. Bredin, J., Simonet, V., Iyer, R., Delcour, A. H. & Pagès, J.-M. Colicins, spermine and cephalosporins: a competitive interaction with the OmpF eyelet. Biochem. J. 376, 245–252 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chevalier, J., Malléa, M. & Pagès, J.-M. Comparative aspects of the diffusion of norfloxacin, cefepime and spermine through the F porin channel of Enterobacter cloacae. Biochem. J. 348, 223–227 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Samartzidou, H. & Delcour, A. H. Excretion of endogenous cadaverine leads to a decrease in porin-mediated outer membrane permeability. J. Bacteriol. 181, 791–798 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Samartzidou, H., Mehrazin, M., Xu, Z., Benedik, M. J. & Delcour, A. H. Cadaverine inhibition of porin plays a role in cell survival at acidic pH. J. Bacteriol. 185, 13–19 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bower, J. M. & Mulvey, M. A. Polyamine-mediated resistance of uropathogenic Escherichia coli to nitrosative stress. J. Bacteriol. 188, 928–933 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dutzler, R. et al. Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella pneumoniae. Structure 7, 425–434 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Mach, T., Chimerel, C., Fritz, J., Fertig, N., Winterhalter, M. & Fütterer, C. Miniaturized planar lipid bilayer: increased stability, low electric noise and fast fluid perfusion. Analytical Bionanalyt. Chem. 390, 341–346 (2008).

    Google Scholar 

Download references

Acknowledgements

Support for this project was obtained through European Union grant MRTN-CT-2005–019335 “Translocation”, COST Action BM0701 “ATENS” and from the Université de la Méditerranée and Service de Santé des Armées.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie Pagès.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Acinetobacter baumannii

Enterobacter cloacae

Escherichia coli

Klebsiella pneumoniae

Neisseria gonorrhoeae

Pseudomonas aeruginosa

S. typhi

FURTHER INFORMATION

Jean-Marie Pagès' homepage

Mathias Winterhalter's homepage

Transport Protein Database

Glossary

Nosocomial

Hospital-acquired infection.

Conductance

A measure of translocated charges per unit time and voltage gradient.

Selectivity

The translocation efficiency of a channel for a particular type of ion with respect to another ion.

Voltage gating

Effect observed for some channels whereby a high voltage gradient causes a sudden closure of the ion current. The molecular origins remain unsolved.

β-lactam

A major family of antibiotic molecules.

Antibiotherapy

A therapy that uses antibiotics to treat infections.

Cephalosporins and carbapenems

Two subclasses of the β-lactam family.

Bacteraemia

A medical condition in which bacteria enter the bloodstream.

Permeation

Diffusion through a membrane, either through the lipid or through channels or carriers.

Metadynamics modelling

A method to simulate rare events on the basis of the choice of the relevant variables of a process and on the acceleration of these variables.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagès, JM., James, C. & Winterhalter, M. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol 6, 893–903 (2008). https://doi.org/10.1038/nrmicro1994

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1994

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing