Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Control of cell cycle transcription during G1 and S phases

Subjects

Key Points

  • The G1–S transcriptional programme is robustly activated by positive feedback mechanisms, creating an 'all-or-none' switch that leads to cell cycle commitment. Inactivation of G1–S transcription in both yeast and humans involves negative feedback loops.

  • The wave of G1–S transcripts consists of subgroups based on their function, timing and mechanism of regulation.

  • G1–S transcription is mechanistically linked to the DNA replication checkpoint by shared transcription factors in both yeast and humans in order to promote genomic stability during replication stress.

  • Systems level properties associated with G1 control, such as the commitment point to cell division, the temporal pattern of G1–S transcription and its response to genotoxic stress, are likely to be conserved across eukaryotes despite frequent lack of protein sequence homology within the regulatory network.

Abstract

The accurate transition from G1 phase of the cell cycle to S phase is crucial for the control of eukaryotic cell proliferation, and its misregulation promotes oncogenesis. During G1 phase, growth-dependent cyclin-dependent kinase (CDK) activity promotes DNA replication and initiates G1-to-S phase transition. CDK activation initiates a positive feedback loop that further increases CDK activity, and this commits the cell to division by inducing genome-wide transcriptional changes. G1–S transcripts encode proteins that regulate downstream cell cycle events. Recent work is beginning to reveal the complex molecular mechanisms that control the temporal order of transcriptional activation and inactivation, determine distinct functional subgroups of genes and link cell cycle-dependent transcription to DNA replication stress in yeast and mammals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: G1–S transcriptional activation.
Figure 2: G1–S transcriptional repression.
Figure 3: G1–S phase transcription and genome stability.

Similar content being viewed by others

References

  1. Morgan, D. O. in The cell cycle: principles of control. (ed. Lawrence, E.) 157–173 (New Science Press, 2007).

    Google Scholar 

  2. Massague, J. G1 cell-cycle control and cancer. Nature 432, 298–306 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Henley, S. A. & Dick, F. A. The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle. Cell Div. 7, 10 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chinnam, M. & Goodrich, D. W. RB1, development, and cancer. Curr. Top. Dev. Biol. 94, 129–169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Helin, K. Regulation of cell proliferation by the E2F transcription factors. Curr. Opin. Genet. Dev. 8, 28–35 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Umen, J. G. & Goodenough, U. W. Control of cell division by a retinoblastoma protein homolog in Chlamydomonas. Genes Dev. 15, 1652–1661 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cross, F. R., Buchler, N. E. & Skotheim, J. M. Evolution of networks and sequences in eukaryotic cell cycle control. Phil. Trans. R. Soc. Lond. B 366, 3532–3544 (2011).

    Article  CAS  Google Scholar 

  9. van den Heuvel, S. & Dyson, N. J. Conserved functions of the pRB and E2F families. Nature Rev. Mol. Cell Biol. 9, 713–724 (2008).

    Article  CAS  Google Scholar 

  10. Cooper, K. Rb, whi it's not just for metazoans anymore. Oncogene 25, 5228–5232 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. de Bruin, R. A. & Wittenberg, C. All eukaryotes: before turning off G1–S transcription, please check your DNA. Cell Cycle 8, 214–217 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Bahler, J. Cell-cycle control of gene expression in budding and fission yeast. Annu. Rev. Genet. 39, 69–94 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Fukuoka, M. et al. Identification of preferentially reactivated genes during early G1 phase using nascent mRNA as an index of transcriptional activity. Biochem. Biophys. Res. Commun. 430, 1005–1010 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Wittenberg, C. & Reed, S. I. Cell cycle-dependent transcription in yeast: promoters, transcription factors, and transcriptomes. Oncogene 24, 2746–2755 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Spellman, P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Whitfield, M. L. et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell 13, 1977–2000 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Skaar, J. R. & Pagano, M. Control of cell growth by the SCF and APC/C ubiquitin ligases. Curr. Opin. Cell Biol. 21, 816–824 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bloom, J. & Cross, F. R. Multiple levels of cyclin specificity in cell-cycle control. Nature Rev. Mol. Cell Biol. 8, 149–160 (2007).

    Article  CAS  Google Scholar 

  19. Branzei, D. & Foiani, M. Maintaining genome stability at the replication fork. Nature Rev. Mol. Cell Biol. 11, 208–219 (2010).

    Article  CAS  Google Scholar 

  20. Cimprich, K. A. & Cortez, D. ATR: an essential regulator of genome integrity. Nature Rev. Mol. Cell Biol. 9, 616–627 (2008).

    Article  CAS  Google Scholar 

  21. Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakayama, K. I. & Nakayama, K. Ubiquitin ligases: cell-cycle control and cancer. Nature Rev. Cancer 6, 369–381 (2006).

    Article  CAS  Google Scholar 

  23. Chen, H. Z., Tsai, S. Y. & Leone, G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nature Rev. Cancer 9, 785–797 (2009).

    Article  CAS  Google Scholar 

  24. Johnson, D. G. & Schneider-Broussard, R. Role of E2F in cell cycle control and cancer. Front Biosci. 3, d447–d448 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Asano, M., Nevins, J. R. & Wharton, R. P. Ectopic E2F expression induces S phase and apoptosis in Drosophilai maginal discs. Genes Dev. 10, 1422–1432 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Lukas, J., Petersen, B. O., Holm, K., Bartek, J. & Helin, K. Deregulated expression of E2F family members induces S-phase entry and overcomes p16INK4A-mediated growth suppression. Mol. Cell. Biol. 16, 1047–1057 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Malumbres, M. & Barbacid, M. To cycle or not to cycle: a critical decision in cancer. Nature Rev. Cancer 1, 222–231 (2001).

    Article  CAS  Google Scholar 

  29. Chong, J. L. et al. E2f1–3 switch from activators in progenitor cells to repressors in differentiating cells. Nature 462, 930–934 (2009). Establishes the in vivo relevance of E2F1, E2F2 and E2F3, indicating an important role for their repressor function in addition to their well-established function in transcriptional activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weijts, B. G. et al. E2F7 and E2F8 promote angiogenesis through transcriptional activation of VEGFA in cooperation with HIF1. EMBO J. 31, 3871–3884 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, B. K., Bhinge, A. A. & Iyer, V. R. Wide-ranging functions of E2F4 in transcriptional activation and repression revealed by genome-wide analysis. Nucleic Acids Res. 39, 3558–3573 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Helin, K., Harlow, E. & Fattaey, A. Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Mol. Cell. Biol. 13, 6501–6508 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hatakeyama, M. & Weinberg, R. A. The role of RB in cell cycle control. Prog. Cell Cycle Res. 1, 9–19 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Wirt, S. E. & Sage, J. p107 in the public eye: an Rb understudy and more. Cell Div. 5, 9 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ginsberg, D. et al. E2F-4, a new member of the E2F transcription factor family, interacts with p107. Genes Dev. 8, 2665–2679 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Grana, X., Garriga, J. & Mayol, X. Role of the retinoblastoma protein family, pRB, p107 and p130 in the negative control of cell growth. Oncogene 17, 3365–3383 (1998).

    Article  PubMed  Google Scholar 

  37. Dimova, D. K. & Dyson, N. J. The E2F transcriptional network: old acquaintances with new faces. Oncogene 24, 2810–2826 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Hitchens, M. R. & Robbins, P. D. The role of the transcription factor DP in apoptosis. Apoptosis 8, 461–468 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Gaubatz, S. et al. E2F4 and E2F5 play an essential role in pocket protein-mediated G1 control. Mol. Cell 6, 729–735 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Takahashi, Y., Rayman, J. B. & Dynlacht, B. D. Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev. 14, 804–816 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Balciunaite, E. et al. Pocket protein complexes are recruited to distinct targets in quiescent and proliferating cells. Mol. Cell. Biol. 25, 8166–8178 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Beijersbergen, R. L. et al. E2F-4, a new member of the E2F gene family, has oncogenic activity and associates with p107 in vivo. Genes Dev. 8, 2680–2690 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Gaubatz, S., Lees, J. A., Lindeman, G. J. & Livingston, D. M. E2F4 is exported from the nucleus in a CRM1-dependent manner. Mol. Cell. Biol. 21, 1384–1392 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, D. et al. Division and apoptosis of E2f-deficient retinal progenitors. Nature 462, 925–929 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Litovchick, L. et al. Evolutionarily conserved multisubunit RBL2/p130 and E2F4 protein complex represses human cell cycle-dependent genes in quiescence. Mol. Cell 26, 539–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Chicas, A. et al. Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell 17, 376–387 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. de Bruin, R. A. et al. Cln3 activates G1-Specific transcription via phosphorylation of the SBF bound repressor Whi5. Cell 117, 887–898 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Costanzo, M. et al. CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 117, 899–913 (2004). Establishes, together with reference 47, the role of Whi5 in G1 cyclin–Cdk-mediated activation of G1–S transcription in budding yeast.

    Article  CAS  PubMed  Google Scholar 

  49. de Bruin, R. A. et al. Constraining G1-Specific transcription to late G1 phase: the MBF-associated corepressor Nrm1 acts via negative feedback. Mol. Cell 23, 483–496 (2006). Shows that the transcriptional co-repressor Nrm1 is involved in a negative feedback mechanism to turn off G1–S transcription in budding and fission yeast.

    Article  CAS  PubMed  Google Scholar 

  50. Wijnen, H., Landman, A. & Futcher, B. The G1 cyclin Cln3 promotes cell cycle entry via the transcription factor Swi6. Mol. Cell. Biol. 22, 4402–4418 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ferrezuelo, F., Colomina, N., Futcher, B. & Aldea, M. The transcriptional network activated by Cln3 cyclin at the G1-to-S transition of the yeast cell cycle. Genome Biol. 11, R67 (2012).

    Article  CAS  Google Scholar 

  52. Bean, J. M., Siggia, E. D. & Cross, F. R. High functional overlap between MluI cell-cycle box binding factor and Swi4/6 cell-cycle box binding factor in the G1/S transcriptional program in Saccharomyces cerevisiae. Genetics 171, 49–61 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kosugi, S., Hasebe, M., Tomita, M. & Yanagawa, H. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc. Natl Acad. Sci. USA 106, 10171–10176 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Skotheim, J. M., Di Talia, S., Siggia, E. D. & Cross, F. R. Positive feedback of G1 cyclins ensures coherent cell cycle entry. Nature 454, 291–296 (2008). Establishes the positive feedback mechanism required for robust activation of G1–S transcription.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Doncic, A., Falleur-Fettig, M. & Skotheim, J. M. Distinct interactions select and maintain a specific cell fate. Mol. Cell 43, 528–539 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Eser, U., Falleur-Fettig, M., Johnson, A. & Skotheim, J. M. Commitment to a cellular transition precedes genome-wide transcriptional change. Mol. Cell 43, 515–527 (2011). Identifies differential timing for the expression of G1–S genes in yeast and humans and shows the importance of feedback first regulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bracken, A. P., Ciro, M., Cocito, A. & Helin, K. E2F target genes: unraveling the biology. Trends Biochem. Sci. 29, 409–417 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Yung, Y., Walker, J. L., Roberts, J. M. & Assoian, R. K. A Skp2 autoinduction loop and restriction point control. J. Cell Biol. 178, 741–747 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Johnson, D. G., Ohtani, K. & Nevins, J. R. Autoregulatory control of E2F1 expression in response to positive and negative regulators of cell cycle progression. Genes Dev. 8, 1514–1525 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Foster, D. A., Yellen, P., Xu, L. & Saqcena, M. Regulation of G1 cell cycle progression: distinguishing the restriction point from a nutrient-sensing cell growth checkpoint(s). Genes Cancer 1, 1124–1131 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Martinsson, H. S., Starborg, M., Erlandsson, F. & Zetterberg, A. Single cell analysis of G1 check points-the relationship between the restriction point and phosphorylation of pRb. Exp. Cell Res. 305, 383–391 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Hitomi, M. et al. p27Kip1 and cyclin dependent kinase 2 regulate passage through the restriction point. Cell Cycle 5, 2281–2289 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Schwob, E., Bohm, T., Mendenhall, M. D. & Nasmyth, K. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79, 233–244 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Nash, P. et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414, 514–521 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Koivomagi, M. et al. Cascades of multisite phosphorylation control Sic1 destruction at the onset of S phase. Nature 480, 128–131 (2012). Establishes the role of semi-processive multi-site phosphorylation events in the degradation of the Cdk inhibitor Sic1.

    Article  CAS  Google Scholar 

  66. Masumoto, H., Muramatsu, S., Kamimura, Y. & Araki, H. S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast. Nature 415, 651–655 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Zegerman, P. & Diffley, J. F. Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature 445, 281–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Kang, Y. H., Galal, W. C., Farina, A., Tappin, I. & Hurwitz, J. Properties of the human Cdc45/Mcm2-7/GINS helicase complex and its action with DNA polymerase epsilon in rolling circle DNA synthesis. Proc. Natl Acad. Sci. USA 109, 6042–6047 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wilmes, G. M. et al. Interaction of the S-phase cyclin Clb5 with an 'RXL' docking sequence in the initiator protein Orc6 provides an origin-localized replication control switch. Genes Dev. 18, 981–991 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Koivomagi, M. et al. Dynamics of Cdk1 substrate specificity during the cell cycle. Mol. Cell 42, 610–623 (2012).

    Article  CAS  Google Scholar 

  71. Loog, M. & Morgan, D. O. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature 434, 104–108 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Stern, B. & Nurse, P. A quantitative model for the cdc2 control of S phase and mitosis in fission yeast. Trends Genet. 12, 345–350 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Amon, A., Tyers, M., Futcher, B. & Nasmyth, K. Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell 74, 993–1007 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. de Bruin, R. A., Kalashnikova, T. I. & Wittenberg, C. Stb1 collaborates with other regulators to modulate the G1-Specific transcriptional circuit. Mol. Cell. Biol. 28, 6919–6928 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Siegmund, R. F. & Nasmyth, K. A. The Saccharomyces cerevisiae Start-specific transcription factor Swi4 interacts through the ankyrin repeats with the mitotic Clb2/Cdc28 kinase and through its conserved carboxy terminus with Swi6. Mol. Cell. Biol. 16, 2647–2655 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Koch, C., Schleiffer, A., Ammerer, G. & Nasmyth, K. Switching transcription on and off during the yeast cell cycle: Cln/Cdc28 kinases activate bound transcription factor SBF (Swi4/Swi6) at start, whereas Clb/Cdc28 kinases displace it from the promoter in G2. Genes Dev. 10, 129–141 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Moll, T. et al. Transcription factors important for starting the cell cycle in yeast. Phil. Trans. R. Soc. Lond. B 340, 351–360 (1993).

    Article  CAS  Google Scholar 

  78. Xu, M., Sheppard, K. A., Peng, C. Y., Yee, A. S. & Piwnica-Worms, H. Cyclin A/CDK2 binds directly to E2F-1 and inhibits the DNA-binding activity of E2F-1/DP-1 by phosphorylation. Mol. Cell. Biol. 14, 8420–8431 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dynlacht, B. D., Flores, O., Lees, J. A. & Harlow, E. Differential regulation of E2F transactivation by cyclin/cdk2 complexes. Genes Dev. 8, 1772–1786 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. Krek, W. et al. Negative regulation of the growth-promoting transcription factor E2F-1 by a stably bound cyclin A-dependent protein kinase. Cell 78, 161–172 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Carrano, A. C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol. 1, 193–199 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Montagnoli, A. et al. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev. 13, 1181–1189 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Marti, A., Wirbelauer, C., Scheffner, M. & Krek, W. Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nature Cell Biol. 1, 14–19 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Campanero, M. R. & Flemington, E. K. Regulation of E2F through ubiquitin–proteasome-dependent degradation: stabilization by the pRB tumor suppressor protein. Proc. Natl Acad. Sci. USA 94, 2221–2226 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hateboer, G., Kerkhoven, R. M., Shvarts, A., Bernards, R. & Beijersbergen, R. L. Degradation of E2F by the ubiquitin–proteasome pathway: regulation by retinoblastoma family proteins and adenovirus transforming proteins. Genes Dev. 10, 2960–2970 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Aligianni, S. et al. The fission yeast homeodomain protein Yox1p binds to MBF and confines MBF-dependent cell-cycle transcription to G1–S via negative feedback. PLoS Genet. 5, e1000626 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ostapenko, D. & Solomon, M. J. Anaphase promoting complex-dependent degradation of transcriptional repressors Nrm1 and Yhp1 in Saccharomyces cerevisiae. Mol. Biol. Cell 22, 2175–2184 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li, J. et al. Synergistic function of E2F7 and E2F8 is essential for cell survival and embryonic development. Dev. Cell 14, 62–75 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Westendorp, B. et al. E2F7 represses a network of oscillating cell cycle genes to control S-phase progression. Nucleic Acids Res. 40, 3511–3523 (2012). Establishes a role for E2F7 in the repression of G1–S transcription during S phase in mammalian cells.

    Article  CAS  PubMed  Google Scholar 

  90. Lyons, T. E., Salih, M. & Tuana, B. S. Activating E2Fs mediate transcriptional regulation of human E2F6 repressor. Am. J. Physiol. Cell Physiol. 290, C189–C199 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Moon, N. S. & Dyson, N. E2F7 and E2F8 keep the E2F family in balance. Dev. Cell 14, 1–3 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Cartwright, P., Muller, H., Wagener, C., Holm, K. & Helin, K. E2F-6: a novel member of the E2F family is an inhibitor of E2F-dependent transcription. Oncogene 17, 611–623 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. de Bruin, A. et al. Identification and characterization of E2F7, a novel mammalian E2F family member capable of blocking cellular proliferation. J. Biol. Chem. 278, 42041–42049 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Di Stefano, L., Jensen, M. R. & Helin, K. E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes. EMBO J. 22, 6289–6298 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Logan, N. et al. E2F-8: an E2F family member with a similar organization of DNA-binding domains to E2F-7. Oncogene 24, 5000–5004 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Trimarchi, J. M. et al. E2F-6, a member of the E2F family that can behave as a transcriptional repressor. Proc. Natl Acad. Sci. USA 95, 2850–2855 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lammens, T., Li, J., Leone, G. & De Veylder, L. Atypical E2Fs: new players in the E2F transcription factor family. Trends Cell Biol. 19, 111–118 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bertoli, C., Klier, S., McGowan, C., Wittenberg, C. & de Bruin, R. A. M. Chk1 inhibits E2F6 repressor function in response to replication stress to maintain cell cycle transcription. Curr. Biol. (in the press).

  99. Giangrande, P. H. et al. A role for E2F6 in distinguishing G1/S- and G2/M-specific transcription. Genes Dev. 18, 2941–2951 (2004). Proposes that E2F6 could be involved in a negative feedback loop to repress G1–S transcription when cells progress to S phase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Powell, B. L. et al. Leukapheresis induced changes in cell cycle distribution and nucleoside transporters in patients with untreated acute myeloid leukemia. Leukemia 5, 1037–1042 (1991).

    CAS  PubMed  Google Scholar 

  101. Bastos de Oliveira, F. M., Harris, M. R., Brazauskas, P., de Bruin, R. A. & Smolka, M. B. Linking DNA replication checkpoint to MBF cell-cycle transcription reveals a distinct class of G1/S genes. EMBO J. 31, 1798–1810 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Travesa, A. et al. DNA replication stress differentially regulates G1/S genes via Rad53-dependent inactivation of Nrm1. EMBO J. 31, 1811–1822 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Smolka, M. B., Bastos de Oliveira, F. M., Harris, M. R. & de Bruin, R. A. The checkpoint transcriptional response: Make sure to turn it off once you are satisfied. Cell Cycle 11, 3166–3174 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jensen, L. J., Jensen, T. S., de Lichtenberg, U., Brunak, S. & Bork, P. Co-evolution of transcriptional and post-translational cell-cycle regulation. Nature 443, 594–597 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Trojer, P. et al. L3MBTL2 protein acts in concert with PcG protein-mediated monoubiquitination of H2A to establish a repressive chromatin structure. Mol. Cell 42, 438–450 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Xu, X. et al. A comprehensive ChIP–chip analysis of E2F1, E2F4, and E2F6 in normal and tumor cells reveals interchangeable roles of E2F family members. Genome Res. 17, 1550–1561 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zegerman, P. & Diffley, J. F. DNA replication as a target of the DNA damage checkpoint. DNA Repair (Amst.) 8, 1077–1088 (2009).

    Article  CAS  Google Scholar 

  108. Chu, Z. et al. Modulation of cell cycle-specific gene expressions at the onset of S phase arrest contributes to the robust DNA replication checkpoint response in fission yeast. Mol. Biol. Cell 18, 1756–1767 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gomez-Escoda, B. et al. Yox1 links MBF-dependent transcription to completion of DNA synthesis. EMBO Rep. 12, 84–89 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Caetano, C., Klier, S. & de Bruin, R. A. Phosphorylation of the MBF repressor Yox1p by the DNA replication checkpoint keeps the G1/S cell-cycle transcriptional program active. PLoS ONE6, e17211 (2011).

  111. de Bruin, R. A. et al. DNA replication checkpoint promotes G1–S transcription by inactivating the MBF repressor Nrm1. Proc. Natl Acad. Sci. USA 105, 11230–11235 (2008). Establishes, together with reference 98, the mechanism of how the DNA replication checkpoint co-opts the cell cycle transcriptional programme to respond to replication stress in fission yeast and in human cells.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Dutta, C. et al. The DNA replication checkpoint directly regulates MBF-dependent G1/S transcription. Mol. Cell. Biol. 28, 5977–5985 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ivanova, T., Gomez-Escoda, B., Hidalgo, E. & Ayte, J. G1/S transcription and the DNA synthesis checkpoint: common regulatory mechanisms. Cell Cycle 10, 912–915 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Purtill, F. S. et al. A homeodomain transcription factor regulates the DNA replication checkpoint in yeast. Cell Cycle 10, 664–670 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lin, W. C., Lin, F. T. & Nevins, J. R. Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev. 15, 1833–1844 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Pediconi, N. et al. Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nature Cell Biol. 5, 552–558 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Stevens, C. & La Thangue, N. B. E2F and cell cycle control: a double-edged sword. Arch. Biochem. Biophys. 412, 157–169 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Stevens, C., Smith, L. & La Thangue, N. B. Chk2 activates E2F-1 in response to DNA damage. Nature Cell Biol. 5, 401–409 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Urist, M. Tanaka, T., Poyurovsky, M. V. & Prives, C. p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2. Genes Dev. 18, 3041–3054 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang, B., Liu, K., Lin, F. T. & Lin, W. C. A role for 14-3-3 tau in E2F1 stabilization and DNA damage-induced apoptosis. J. Biol. Chem. 279, 54140–54152 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Zhang, H. S., Postigo, A. A. & Dean, D. C. Active transcriptional repression by the Rb-E2F complex mediates G1 arrest triggered by p16INK4a, TGFβ, and contact inhibition. Cell 97, 53–61 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Hurford, R. K. Jr., Cobrinik, D., Lee, M. H. & Dyson, N. pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev. 11, 1447–1463 (1997).

    Article  CAS  PubMed  Google Scholar 

  123. Vairo, G., Livingston, D. M. & Ginsberg, D. Functional interaction between E2F-4 and p130: evidence for distinct mechanisms underlying growth suppression by different retinoblastoma protein family members. Genes Dev. 9, 869–881 (1995).

    Article  CAS  PubMed  Google Scholar 

  124. Moberg, K., Starz, M. A. & Lees, J. A. E2F-4 switches from p130 to p107 and pRB in response to cell cycle reentry. Mol. Cell. Biol. 16, 1436–1449 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Deschenes, C., Alvarez, L., Lizotte, M. E., Vezina, A. & Rivard, N. The nucleocytoplasmic shuttling of E2F4 is involved in the regulation of human intestinal epithelial cell proliferation and differentiation. J. Cell. Physiol. 199, 262–273 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Hijmans, E. M., Voorhoeve, P. M., Beijersbergen, R. L., van 't Veer, L. J. & Bernards, R. E2F-5, a new E2F family member that interacts with p130 in vivo. Mol. Cell. Biol. 15, 3082–3089 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chen, C. R., Kang, Y., Siegel, P. M. & Massague, J. E2F4/5 and p107 as Smad cofactors linking the TGFβ receptor to c-myc repression. Cell 110, 19–32 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Christensen, J. et al. Characterization of E2F8, a novel E2F-like cell-cycle regulated repressor of E2F-activated transcription. Nucleic Acids Res. 33, 5458–5470 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Maiti, B. et al. Cloning and characterization of mouse E2F8, a novel mammalian E2F family member capable of blocking cellular proliferation. J. Biol. Chem. 280, 18211–18220 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Bhattacharya, S. et al. SKP2 associates with p130 and accelerates p130 ubiquitylation and degradation in human cells. Oncogene 22, 2443–2451 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Bartek, J. & Lukas, J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3, 421–429 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Sorensen, C. S. & Syljuasen, R. G. Safeguarding genome integrity: the checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication. Nucleic Acids Res. 40, 477–486 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Bartek, J., Lukas, C. & Lukas, J. Checking on DNA damage in S phase. Nature Rev. Mol. Cell Biol. 5, 792–804 (2004).

    Article  CAS  Google Scholar 

  134. Vousden, K. H. & Prives, C. Blinded by the light: the growing complexity of p53. Cell 137, 413–431 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Coller, H. A., Sang, L. & Roberts, J. M. A new description of cellular quiescence. PLoS Biol. 4, e83 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sang, L., Coller, H. A. & Roberts, J. M. HES1 regulates the reversibility of cellular quiescence. Science 321, 1095–1100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bhaduri, S. & Pryciak, P. M. Cyclin-specific docking motifs promote phosphorylation of yeast signaling proteins by G1/S Cdk complexes. Curr. Biol. 21, 1615–1623 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.B and R.A.M de Bruin were funded by the Medical Research Council (MRC). J.M.S. was funded by the National Institutes of Health (NIH) (GM092925) and the Burroughs Wellcome Fund. The authors thank A. Johnson and C. Schwarz for careful reading of the manuscript. They apologize to colleagues whose work could only be cited indirectly.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cosetta Bertoli, Jan M. Skotheim or Robertus A. M. de Bruin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Ubiquitin ligase

An enzyme that recognizes Lys residues on a target protein and causes the attachment of ubiquitin to these residues.

RB

A protein that binds activator E2F proteins to inhibit transcription outside of G1–S in animals. RB is an oncoprotein that is dysfunctional in several major cancers.

Pocket proteins

Family of proteins, including RB, p107 and p130, that associates with members of the E2F transcription factor family to inhibit transcription. The pocket domain is essential for tumour suppressing activity.

Whi5

An inhibitor of SBF (SCB-binding factor)-dependent transcription during early G1 in yeast.

Regulon

A collection of genes under the control of the same regulatory protein.

Nrm1 and Yox1

Nrm1 in budding yeast and Nrm1 and Yox1 in fission yeast bind MBF (MCB-binding factor) to inhibit transcription once cells transit into S phase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertoli, C., Skotheim, J. & de Bruin, R. Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol 14, 518–528 (2013). https://doi.org/10.1038/nrm3629

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3629

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing