Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Multifunctional deadenylase complexes diversify mRNA control

Abstract

Dynamic changes of the lengths of mRNA poly(A) tails are catalysed by diverse deadenylase enzymes. Modulating the length of the poly(A) tail of an mRNA is a widespread means of controlling protein production and mRNA stability. Recent insights illuminate the specialized activities, biological functions and regulation of deadenylases. We propose that the recruitment of multifunctional deadenylase complexes provides unique opportunities to control mRNAs and that the heterogeneity of the deadenylase complexes is exploited to control translation and mRNA stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways of translation and degradation.
Figure 2: Regulation of mRNA deadenylation.
Figure 3: Multifunctional control of mRNA decay and translation.

Similar content being viewed by others

References

  1. Mathews, M. B., Sonenberg, N. & Hershey, J. W. B. (eds) Translational Control in Biology and Medicine (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2007).

    Google Scholar 

  2. Zhao, J., Hyman, L. & Moore, C. Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol. Biol. Rev. 63, 405–445 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gorgoni, B. & Gray, N. K. The roles of cytoplasmic poly(A)-binding proteins in regulating gene expression: a developmental perspective. Brief Funct. Genomics Proteomics 3, 125–141 (2004).

    Article  CAS  Google Scholar 

  4. Garneau, N. L., Wilusz, J. & Wilusz, C. J. The highways and byways of mRNA decay. Nature Rev. Mol. Cell Biol. 8, 113–126 (2007).

    Article  CAS  Google Scholar 

  5. Colegrove-Otero, L. J., Minshall, N. & Standart, N. RNA-binding proteins in early development. Crit. Rev. Biochem. Mol. Biol. 40, 21–73 (2005).

    Article  CAS  Google Scholar 

  6. Lackner, D. H. et al. A network of multiple regulatory layers shapes gene expression in fission yeast. Mol. Cell 26, 145–155 (2007).

    Article  CAS  Google Scholar 

  7. Beilharz, T. H. & Preiss, T. Widespread use of poly(A) tail length control to accentuate expression of the yeast transcriptome. RNA 13, 982–997 (2007).

    Article  CAS  Google Scholar 

  8. Funakoshi, Y. et al. Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases. Genes Dev. 21, 3135–3148 (2007).

    Article  CAS  Google Scholar 

  9. Doma, M. K. & Parker, R. RNA quality control in eukaryotes. Cell 131, 660–668 (2007).

    Article  CAS  Google Scholar 

  10. Bianchin, C., Mauxion, F., Sentis, S., Seraphin, B. & Corbo, L. Conservation of the deadenylase activity of proteins of the Caf1 family in human. RNA 11, 487–494 (2005).

    Article  CAS  Google Scholar 

  11. Thore, S., Mauxion, F., Seraphin, B. & Suck, D. X-ray structure and activity of the yeast Pop2 protein: a nuclease subunit of the mRNA deadenylase complex. EMBO Rep. 4, 1150–1155 (2003).

    Article  CAS  Google Scholar 

  12. Zuo, Y. & Deutscher, M. P. Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res. 29, 1017–1026 (2001).

    Article  CAS  Google Scholar 

  13. Dlakic, M. Functionally unrelated signalling proteins contain a fold similar to Mg2+-dependent endonucleases. Trends Biochem. Sci. 25, 272–273 (2000).

    Article  CAS  Google Scholar 

  14. Liu, Q., Greimann, J. C. & Lima, C. D. Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127, 1223–1237 (2006).

    Article  CAS  Google Scholar 

  15. Dupressoir, A. et al. Identification of four families of yCCR4- and Mg2+-dependent endonuclease-related proteins in higher eukaryotes, and characterization of orthologs of yCCR4 with a conserved leucine-rich repeat essential for hCAF1/hPOP2 binding. BMC Genomics 2, 9 (2001).

    Article  CAS  Google Scholar 

  16. Wagner, E., Clement, S. L. & Lykke-Andersen, J. An unconventional human CCR4–CAF1 deadenylase complex in nuclear cajal bodies. Mol. Cell Biol. 27, 1686–1695 (2007).

    Article  CAS  Google Scholar 

  17. Faber, A. W., Van Dijk, M., Raue, H. A. & Vos, J. C. Ngl2p is a Ccr4p-like RNA nuclease essential for the final step in 3′-end processing of 5.8S rRNA in Saccharomyces cerevisiae. RNA 8, 1095–1101 (2002).

    Article  CAS  Google Scholar 

  18. Kubota, K. et al. Identification of 2′-phosphodiesterase, which plays a role in the 2–5A system regulated by interferon. J. Biol. Chem. 279, 37832–37841 (2004).

    Article  CAS  Google Scholar 

  19. Tucker, M. et al. The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104, 377–386 (2001).

    Article  CAS  Google Scholar 

  20. Yamashita, A. et al. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nature Struct. Mol. Biol. 12, 1054–1063 (2005).

    Article  CAS  Google Scholar 

  21. Wu, M. et al. Structural insight into poly(A) binding and catalytic mechanism of human PARN. EMBO J. 24, 4082–4093 (2005).

    Article  CAS  Google Scholar 

  22. Denis, C. L. & Chen, J. The CCR4–NOT complex plays diverse roles in mRNA metabolism. Prog. Nucleic Acid Res. Mol. Biol. 73, 221–250 (2003).

    Article  CAS  Google Scholar 

  23. Morita, M. et al. Depletion of mammalian CCR4b deadenylase triggers elevation of the p27Kip1 mRNA level and impairs cell growth. Mol. Cell Biol. 27, 4980–4990 (2007).

    Article  CAS  Google Scholar 

  24. Goldstrohm, A. C., Hook, B. A., Seay, D. J. & Wickens, M. PUF proteins bind Pop2p to regulate messenger RNAs. Nature Struct. Mol. Biol. 13, 533–539 (2006).

    Article  CAS  Google Scholar 

  25. Morel, A. P. et al. BTG2 antiproliferative protein interacts with the human CCR4 complex existing in vivo in three cell-cycle-regulated forms. J. Cell Sci. 116, 2929–2936 (2003).

    Article  CAS  Google Scholar 

  26. Kadyrova, L. Y., Habara, Y., Lee, T. H. & Wharton, R. P. Translational control of maternal Cyclin B mRNA by Nanos in the Drosophila germline. Development 134, 1519–1527 (2007).

    Article  CAS  Google Scholar 

  27. Korner, C. G. et al. The deadenylating nuclease (DAN) is involved in poly(A) tail removal during the meiotic maturation of Xenopus oocytes. EMBO J. 17, 5427–5437 (1998).

    Article  CAS  Google Scholar 

  28. Molin, L. & Puisieux, A. C. elegans homologue of the Caf1 gene, which encodes a subunit of the CCR4–NOT complex, is essential for embryonic and larval development and for meiotic progression. Gene 358, 73–81 (2005).

    Article  CAS  Google Scholar 

  29. Morris, J. Z., Hong, A., Lilly, M. A. & Lehmann, R. Twin, a CCR4 homolog, regulates cyclin poly(A) tail length to permit Drosophila oogenesis. Development 132, 1165–1174 (2005).

    Article  CAS  Google Scholar 

  30. Chiba, Y. et al. AtPARN is an essential poly(A) ribonuclease in Arabidopsis. Gene 328, 95–102 (2004).

    Article  CAS  Google Scholar 

  31. Reverdatto, S. V., Dutko, J. A., Chekanova, J. A., Hamilton, D. A. & Belostotsky, D. A. mRNA deadenylation by PARN is essential for embryogenesis in higher plants. RNA 10, 1200–1214 (2004).

    Article  CAS  Google Scholar 

  32. Berthet, C. et al. CCR4-associated factor CAF1 is an essential factor for spermatogenesis. Mol. Cell Biol. 24, 5808–5820 (2004).

    Article  CAS  Google Scholar 

  33. Nakamura, T. et al. Oligo-astheno-teratozoospermia in mice lacking CNOT7, a regulator of retinoid X receptor β. Nature Genet. 36, 528–533 (2004).

    Article  CAS  Google Scholar 

  34. Washio-Oikawa, K. et al. Cnot7-null mice exhibit high bone mass phenotype and modulation of BMP actions. J. Bone Miner. Res. 22, 1217–1223 (2007).

    Article  Google Scholar 

  35. Green, C. B. et al. Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity. Proc. Natl Acad. Sci. USA 104, 9888–9893 (2007).

    Article  CAS  Google Scholar 

  36. Bjorklund, M. et al. Identification of pathways regulating cell size and cell-cycle progression by RNAi. Nature 439, 1009–1013 (2006).

    Article  Google Scholar 

  37. Bogdan, J. A. et al. Human carbon catabolite repressor protein (CCR4)-associative factor 1: cloning, expression and characterization of its interaction with the B-cell translocation protein BTG1. Biochem. J. 336, 471–481 (1998).

    Article  CAS  Google Scholar 

  38. Lejeune, F., Li, X. & Maquat, L. E. Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol. Cell 12, 675–687 (2003).

    Article  CAS  Google Scholar 

  39. Chen, C. Y. & Shyu, A. B. Rapid deadenylation triggered by a nonsense codon precedes decay of the RNA body in a mammalian cytoplasmic nonsense-mediated decay pathway. Mol. Cell Biol. 23, 4805–4813 (2003).

    Article  CAS  Google Scholar 

  40. Green, C. B. & Besharse, J. C. Identification of a novel vertebrate circadian clock-regulated gene encoding the protein nocturnin. Proc. Natl Acad. Sci. USA 93, 14884–14888 (1996).

    Article  CAS  Google Scholar 

  41. Prevot, D. et al. Relationships of the antiproliferative proteins BTG1 and BTG2 with CAF1, the human homolog of a component of the yeast CCR4 transcriptional complex: involvement in estrogen receptor alpha signaling pathway. J. Biol. Chem. 276, 9640–9648 (2001).

    Article  CAS  Google Scholar 

  42. Gowrishankar, G. et al. Inhibition of mRNA deadenylation and degradation by different types of cell stress. Biol. Chem. 387, 323–327 (2006).

    Article  CAS  Google Scholar 

  43. Hilgers, V., Teixeira, D. & Parker, R. Translation-independent inhibition of mRNA deadenylation during stress in Saccharomyces cerevisiae. RNA 12, 1835–1845 (2006).

    Article  CAS  Google Scholar 

  44. Bonisch, C., Temme, C., Moritz, B. & Wahle, E. Degradation of hsp70 and other mRNAs in Drosophila via the 5′–3′ pathway and its regulation by heat shock. J. Biol. Chem. 282, 21818–21828 (2007).

    Article  Google Scholar 

  45. Eulalio, A., Behm-Ansmant, I. & Izaurralde, E. P bodies: at the crossroads of post-transcriptional pathways. Nature Rev. Mol. Cell Biol. 8, 9–22 (2007).

    Article  CAS  Google Scholar 

  46. Teixeira, D. & Parker, R. Analysis of P-body assembly in Saccharomyces cerevisiae. Mol. Biol. Cell 18, 2274–2287 (2007).

    Article  CAS  Google Scholar 

  47. Conrad, N. K., Shu, M. D., Uyhazi, K. E. & Steitz, J. A. Mutational analysis of a viral RNA element that counteracts rapid RNA decay by interaction with the polyadenylate tail. Proc. Natl Acad. Sci. USA 104, 10412–10417 (2007).

    Article  CAS  Google Scholar 

  48. Muhlrad, D. & Parker, R. The yeast EDC1 mRNA undergoes deadenylation-independent decapping stimulated by Not2p, Not4p, and Not5p. EMBO J. 24, 1033–1045 (2005).

    Article  CAS  Google Scholar 

  49. Kim, J. H. & Richter, J. D. Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation. Mol. Cell 24, 173–183 (2006).

    Article  CAS  Google Scholar 

  50. Moraes, K. C., Wilusz, C. J. & Wilusz, J. CUG-BP binds to RNA substrates and recruits PARN deadenylase. RNA 12, 1084–1091 (2006).

    Article  CAS  Google Scholar 

  51. Ezzeddine, N. et al. Human TOB, an antiproliferative transcription factor, is a PABP-dependent positive regulator of cytoplasmic mRNA deadenylation. Mol. Cell Biol. 27, 7791–7801 (2007).

    Article  CAS  Google Scholar 

  52. Hook, B. A., Goldstrohm, A. C., Seay, D. J. & Wickens, M. Two yeast PUF proteins negatively regulate a single mRNA. J. Biol. Chem. 282, 15430–15438 (2007).

    Article  CAS  Google Scholar 

  53. Briata, P. et al. p38-dependent phosphorylation of the mRNA decay-promoting factor KSRP controls the stability of select myogenic transcripts. Mol. Cell 20, 891–903 (2005).

    Article  CAS  Google Scholar 

  54. Zaessinger, S., Busseau, I. & Simonelig, M. Oskar allows nanos mRNA translation in Drosophila embryos by preventing its deadenylation by Smaug/CCR4. Development 133, 4573–4583 (2006).

    Article  CAS  Google Scholar 

  55. Mangus, D. A. et al. Positive and negative regulation of poly(A) nuclease. Mol. Cell Biol. 24, 5521–5533 (2004).

    Article  CAS  Google Scholar 

  56. Tucker, M., Staples, R. R., Valencia-Sanchez, M. A., Muhlrad, D. & Parker, R. Ccr4p is the catalytic subunit of a Ccr4p–Pop2p–Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMVO J. 21, 1427–1436 (2002).

    Article  CAS  Google Scholar 

  57. Korner, C. G. & Wahle, E. Poly(A) tail shortening by a mammalian poly(A)-specific 3′-exoribonuclease. J. Biol. Chem. 272, 10448–10456 (1997).

    Article  CAS  Google Scholar 

  58. Voeltz, G. K., Ongkasuwan, J., Standart, N. & Steitz, J. A. A novel embryonic poly(A) binding protein, ePAB, regulates mRNA deadenylation in Xenopus egg extracts. Genes Dev. 15, 774–788 (2001).

    Article  CAS  Google Scholar 

  59. Yao, G. et al. PAB1 self-association precludes its binding to poly(A), thereby accelerating CCR4 deadenylation in vivo. Mol. Cell Biol. 27, 6243–6253 (2007).

    Article  CAS  Google Scholar 

  60. Simon, E. & Seraphin, B. A specific role for the C-terminal region of the poly(A)-binding protein in mRNA decay. Nucleic Acids Res. 35, 6017–6028 (2007).

    Article  CAS  Google Scholar 

  61. Balatsos, N. A., Nilsson, P., Mazza, C., Cusack, S. & Virtanen, A. Inhibition of mRNA deadenylation by the nuclear cap binding complex (CBC). J. Biol. Chem. 281, 4517–4522 (2006).

    Article  CAS  Google Scholar 

  62. Tran, H., Schilling, M., Wirbelauer, C., Hess, D. & Nagamine, Y. Facilitation of mRNA deadenylation and decay by the exosome-bound, DExH protein RHAU. Mol. Cell 13, 101–111 (2004).

    Article  CAS  Google Scholar 

  63. Cao, D. & Parker, R. Computational modeling of eukaryotic mRNA turnover. RNA 7, 1192–1212 (2001).

    Article  CAS  Google Scholar 

  64. Seal, R., Temperley, R., Wilusz, J., Lightowlers, R. N. & Chrzanowska-Lightowlers, Z. M. Serum-deprivation stimulates cap-binding by PARN at the expense of eIF4E, consistent with the observed decrease in mRNA stability. Nucleic Acids Res. 33, 376–387 (2005).

    Article  CAS  Google Scholar 

  65. Standart, N. & Jackson, R. J. MicroRNAs repress translation of m7Gppp-capped target mRNAs in vitro by inhibiting initiation and promoting deadenylation. Genes Dev. 21, 1975–1982 (2007).

    Article  CAS  Google Scholar 

  66. Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 20, 1885–1898 (2006).

    Article  CAS  Google Scholar 

  67. Chu, C. Y. & Rana, T. M. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol. 4, e210 (2006).

    Article  Google Scholar 

  68. Viswanathan, P., Ohn, T., Chiang, Y. C., Chen, J. & Denis, C. L. Mouse CAF1 can function as a processive deadenylase/3′–5′-exonuclease in vitro but in yeast the deadenylase function of CAF1 is not required for mRNA poly(A) removal. J. Biol. Chem. 279, 23988–23995 (2004).

    Article  CAS  Google Scholar 

  69. Westmoreland, T. J. et al. Cell cycle progression in G1 and S phases is CCR4 dependent following ionizing radiation or replication stress in Saccharomyces cerevisiae. Eukaryot. Cell 3, 430–446 (2004).

    Article  CAS  Google Scholar 

  70. Uchida, N., Hoshino, S. & Katada, T. Identification of a human cytoplasmic poly(A) nuclease complex stimulated by poly(A)-binding protein. J. Biol. Chem. 279, 1383–1391 (2004).

    Article  CAS  Google Scholar 

  71. Baggs, J. E. & Green, C. B. Nocturnin, a deadenylase in Xenopus laevis retina: a mechanism for posttranscriptional control of circadian-related mRNA. Curr. Biol. 13, 189–198 (2003).

    Article  CAS  Google Scholar 

  72. Gherzi, R. et al. A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol. Cell 14, 571–583 (2004).

    Article  CAS  Google Scholar 

  73. Chou, C. F. et al. Tethering KSRP, a decay-promoting AU-rich element-binding protein, to mRNAs elicits mRNA decay. Mol. Cell Biol. 26, 3695–3706 (2006).

    Article  CAS  Google Scholar 

  74. Semotok, J. L. et al. Smaug recruits the CCR4–POP2–NOT deadenylase complex to trigger maternal transcript localization in the early Drosophila embryo. Curr. Biol. 15, 284–294 (2005).

    Article  CAS  Google Scholar 

  75. Lykke-Andersen, J. & Wagner, E. Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev. 19, 351–361 (2005).

    Article  CAS  Google Scholar 

  76. Chang, T. C. et al. UNR, a new partner of poly(A)-binding protein, plays a key role in translationally coupled mRNA turnover mediated by the c-fos major coding-region determinant. Genes Dev. 18, 2010–2023 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate discussions and input from E. Lund, J. Dahlberg, J. Lykke-Andersen and members of the Wickens laboratory. We thank L. Vanderploeg for assistance with artwork. We apologize to those authors whose work we could not cite owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin Wickens.

Supplementary information

Supplementary information S1 (table)

Deadenylase nomeclature (PDF 173 kb)

Supplementary information S2 (figure)

Deadenylase complexes (PDF 251 kb)

Related links

Related links

FURTHER INFORMATION

Marvin Wickens's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldstrohm, A., Wickens, M. Multifunctional deadenylase complexes diversify mRNA control. Nat Rev Mol Cell Biol 9, 337–344 (2008). https://doi.org/10.1038/nrm2370

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2370

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing