Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular architecture of the kinetochore–microtubule interface

Key Points

  • The kinetochore is a large proteinaceous structure that mediates interactions between chromosomal DNA and spindle-microtubule polymers.

  • More than 80 kinetochore proteins have been identified using various genetic, functional, cell biology and proteomics approaches.

  • Specialized nucleosomes that contain the histone H3 variant CENP-A form the structural foundation for the kinetochore. A combination of sequence-independent epigenetic mechanisms ensure that CENP-A nucleosomes are directed to centromeres.

  • A combination of proteins form the interface with microtubules and provide distinct functions, including generating a core attachment site, coupling kinetochore movement to disassembling microtubules, affecting the polymerization dynamics of kinetochore-bound microtubules and driving translocation along spindle microtubules.

  • Multiple signalling pathways regulate the fidelity and timing of chromosome segregation and kinetochore function, including the mitotic checkpoint and several mitotic kinases.

Abstract

Segregation of the replicated genome during cell division in eukaryotes requires the kinetochore to link centromeric DNA to spindle microtubules. The kinetochore is composed of a number of conserved protein complexes that direct its specification and assembly, bind to spindle microtubules and regulate chromosome segregation. Recent studies have identified more than 80 kinetochore components, and are revealing how these proteins are organized into the higher order kinetochore structure, as well as how they function to achieve proper chromosome segregation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mitotic chromosome segregation.
Figure 2: Vertebrate kinetochore ultrastructure.
Figure 3: Kinetochore specification.
Figure 4: Kinetochore composition is dynamically regulated during the cell cycle.
Figure 5: Molecular mechanisms underlying specific microtubule-directed activities at the kinetochore.

Similar content being viewed by others

References

  1. McEwen, B. F., Dong, Y. & VandenBeldt, K. J. Using electron microscopy to understand functional mechanisms of chromosome alignment on the mitotic spindle. Methods Cell Biol. 79, 259–293 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Brinkley, B. R. & Stubblefield, E. The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma 19, 28–43 (1966).

    Article  CAS  PubMed  Google Scholar 

  3. McEwen, B. F. et al. CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Mol. Biol. Cell 12, 2776–2789 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dong, Y., Vanden Beldt, K. J., Meng, X., Khodjakov, A. & McEwen, B. F. The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions. Nature Cell Biol. 9, 516–522 (2007). Electron tomography of the outer kinetochore plate in vertebrates reveals a fibrillar structure with microtubule plus ends embedded in a radial mesh. No precisely repeated unit binding sites are observed.

    Article  CAS  PubMed  Google Scholar 

  5. Earnshaw, W. C. & Rothfield, N. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91, 313–321 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Palmer, D. K., O'Day, K., Trong, H. L., Charbonneau, H. & Margolis, R. L. Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc. Natl Acad. Sci. USA 88, 3734–3738 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sullivan, K. F., Hechenberger, M. & Masri, K. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J. Cell Biol. 127, 581–592 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Yen, T. J. et al. CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase. EMBO J. 10, 1245–1254 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cooke, C. A., Heck, M. M. & Earnshaw, W. C. The inner centromere protein (INCENP) antigens: movement from inner centromere to midbody during mitosis. J. Cell Biol. 105, 2053–2067 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. McAinsh, A. D., Tytell, J. D. & Sorger, P. K. Structure, function, and regulation of budding yeast kinetochores. Annu. Rev. Cell Dev. Biol. 19, 519–539 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Westermann, S., Drubin, D. G. & Barnes, G. Structures and functions of yeast kinetochore complexes. Annu. Rev. Biochem. 76, 563–591 (2007). References 10 and 11 are in-depth reviews of studies on budding yeast kinetochores.

    Article  CAS  PubMed  Google Scholar 

  12. Goshima, G., Kiyomitsu, T., Yoda, K. & Yanagida, M. Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway. J. Cell Biol. 160, 25–39 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cheeseman, I. M. et al. A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev. 18, 2255–2268 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hayashi, T. et al. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118, 715–729 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Obuse, C. et al. Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently co-localized with the centromeric region in interphase. Genes Cells 9, 105–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Foltz, D. R. et al. The human CENP-A centromeric nucleosome-associated complex. Nature Cell Biol. 8, 458–469 (2006). References 15 and 16, along with reference 21, report proteomics analyses in vertebrates that identified the subunits of the CCAN. Functional studies by Foltz et al . and Okada et al . established the importance of the CCAN in kinetochore assembly and chromosome segregation.

    Article  CAS  PubMed  Google Scholar 

  17. Wigge, P. A. et al. Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. J. Cell Biol. 141, 967–977 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sauer, G. et al. Proteome analysis of the human mitotic spindle. Mol. Cell. Proteomics 4, 35–43 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Wigge, P. A. & Kilmartin, J. V. The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J. Cell Biol. 152, 349–360 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. De Wulf, P., McAinsh, A. D. & Sorger, P. K. Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev. 17, 2902–2921 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Okada, M. et al. The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nature Cell Biol. 8, 446–457 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Maddox, P. S., Oegema, K., Desai, A. & Cheeseman, I. M. “Holo”er than thou: chromosome segregation and kinetochore function in C. elegans. Chromosome Res. 12, 641–653 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Masumoto, H., Masukata, H., Muro, Y., Nozaki, N. & Okazaki, T. A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J. Cell Biol. 109, 1963–1973 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Ohzeki, J., Nakano, M., Okada, T. & Masumoto, H. CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J. Cell Biol. 159, 765–775 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Amor, D. J. & Choo, K. H. Neocentromeres: role in human disease, evolution, and centromere study. Am. J. Hum. Genet. 71, 695–714 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Karpen, G. H. & Allshire, R. C. The case for epigenetic effects on centromere identity and function. Trends Genet. 13, 489–496 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Blower, M. D., Sullivan, B. A. & Karpen, G. H. Conserved organization of centromeric chromatin in flies and humans. Dev. Cell 2, 319–330 (2002). Analysis of the structure of centromeric chromatin in D. melanogaster and human cells. The results indicate the presence of interspersed histone H3- and CENP-A-containing regions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Collins, K. A., Furuyama, S. & Biggins, S. Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant. Curr. Biol. 14, 1968–1972 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Van Hooser, A. A. et al. Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J. Cell Sci. 114, 3529–3542 (2001).

    CAS  PubMed  Google Scholar 

  30. Heun, P. et al. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev. Cell 10, 303–315 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Black, B. E. et al. Structural determinants for generating centromeric chromatin. Nature 430, 578–582 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Black, B. E., Brock, M. A., Bedard, S., Woods, V. L., Jr & Cleveland, D. W. An epigenetic mark generated by the incorporation of CENP-A into centromeric nucleosomes. Proc. Natl Acad. Sci. USA 104, 5008–5013 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Black, B. E. et al. Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol. Cell 25, 309–322 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Fujita, Y. et al. Priming of centromere for CENP-A recruitment by human hMis18α, hMis18β, and M18BP1. Dev. Cell 12, 17–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Maddox, P. S., Hyndman, F., Monen, J., Oegema, K. & Desai, A. Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J. Cell Biol. 176, 757–763 (2007). References 33–35 report both intrinsic and extrinsic mechanisms that are important for centromere targeting of CENP-A (also known as CenH3). Black et al . define a region in the histone fold of CENP-A that, when substituted into canonical histone H3, can direct its centromere localization and function. Fujita et al . and Maddox et al . identify Mis18 and KNL2, two conserved proteins required to target CENP-A to centromeres. See also references 37 and 38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Goshima, G. et al. Genes required for mitotic spindle assembly in Drosophila S2 cells. Science 316, 417–421 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jansen, L. E. T., Black, B. E., Foltz, D. R. & Cleveland, D. W. Propagation of centromeric chromatin requires exit from mitosis. J. Cell Biol. 176, 795–805 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schuh, M., Lehner, C. F. & Heidmann, S. Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr. Biol. 17, 237–243 (2007). References 37 and 38 provide evidence that new CENP-A is loaded after mitotic exit in human cells (Jansen et al .) and during anaphase in syncitial D. melanogaster embryos (Schuh et al .). Productive centromere–microtubule interactions are not required prior to mitotic exit for this loading to occur. The timing of CENP-A loading in human cells coincides with the time when Mis18 and KNL2 localize to centromeres (see references 34 and 35).

    Article  CAS  PubMed  Google Scholar 

  39. Mellone, B. G. & Allshire, R. C. Stretching it: putting the CEN(P-A) in centromere. Curr. Opin. Gen. Dev. 13, 191–198 (2003).

    Article  CAS  Google Scholar 

  40. Furuyama, T., Dalal, Y. & Henikoff, S. Chaperone-mediated assembly of centromeric chromatin in vitro. Proc. Natl Acad. Sci. USA 103, 6172–6177 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sharp, J. A. & Kaufman, P. D. Chromatin proteins are determinants of centromere function. Curr. Top. Microbiol. Immunol. 274, 23–52 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mizuguchi, G., Xiao, H., Wisniewski, J., Smith, M. M. & Wu, C. Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell 129, 1153–1164 (2007). This paper provides evidence that the non-histone protein Scm3 replaces H2a–H2b in centromeric nucleosomes in budding yeast.

    Article  CAS  PubMed  Google Scholar 

  43. Camahort, R. et al. Scm3 is essential to recruit the histone H3 variant Cse4 to centromeres and to maintain a functional kinetochore. Mol. Cell 26, 853–865 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Stoler, S. et al. Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc. Natl Acad. Sci. USA 104, 10571–10576 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Westermann, S. et al. Architecture of the budding yeast kinetochore reveals a conserved molecular core. J. Cell Biol. 163, 215–222 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dalal, Y., Wang, H., Lindsay, S. & Henikoff, S. Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biol. 5, e218 (2007). This paper suggests that tetrameric 'half' CenH3 nucleosomes are present instead of canonical octameric nucleosomes during interphase in D. melanogaster cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Izuta, H. et al. Comprehensive analysis of the ICEN (interphase centromere complex) components enriched in the CENP-A chromatin of human cells. Genes Cells 11, 673–684 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Regnier, V. et al. CENP-A is required for accurate chromosome segregation and sustained kinetochore association of BubR1. Mol. Cell. Biol. 25, 3967–3981 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, S.-T., Rattner, J. B., Jablonski, S. A. & Yen, T. J. Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J. Cell Biol. 175, 41–53 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mythreye, K. & Bloom, K. S. Differential kinetochore protein requirements for establishment versus propagation of centromere activity in Saccharomyces cerevisiae. J. Cell Biol. 160, 833–843 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Takahashi, K., Chen, E. S. & Yanagida, M. Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288, 2215–2219 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Collins, K. A., Castillo, A. R., Tatsutani, S. Y. & Biggins, S. De novo kinetochore assembly requires the centromeric histone H3 variant. Mol. Biol. Cell 16, 5649–5660 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Buchwitz, B. J., Ahmad, K., Moore, L. L., Roth, M. B. & Henikoff, S. A histone-H3-like protein in C. elegans. Nature 401, 547–548 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Oegema, K., Desai, A., Rybina, S., Kirkham, M. & Hyman, A. A. Functional analysis of kinetochore assembly in Caenorhabditis elegans. J. Cell Biol. 153, 1209–1225 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Blower, M. D. & Karpen, G. H. The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nature Cell Biol. 3, 730–739 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Obuse, C. et al. A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1. Nature Cell Biol. 6, 1135–1141 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Kline, S. L., Cheeseman, I. M., Hori, T., Fukagawa, T. & Desai, A. The human Mis12 complex is required for kinetochore assembly and proper chromosome segregation. J. Cell Biol. 173, 9–17 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cheeseman, I. M., Chappie, J. S., Wilson-Kubalek, E. M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983–997 (2006). Reports the biochemical reconstitution of the KMN network and identifies two microtubule-binding activities within it: one in the NDC80–NUF2 dimer of the Ndc80 complex and the second in KNL1. The reconstituted network exhibits synergistically increased affinity for microtubules. Phosphorylation of the N-terminal region of the NDC80 subunit by Aurora B kinase reduces microtubule-binding affinity of the Ndc80 complex. See also reference 75.

    Article  CAS  PubMed  Google Scholar 

  59. Nekrasov, V. S., Smith, M. A., Peak-Chew, S. & Kilmartin, J. V. Interactions between centromere complexes in Saccharomyces cerevisiae. Mol. Biol. Cell 14, 4931–4946 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Desai, A. et al. KNL-1 directs assembly of the microtubule-binding interface of the kinetochore in C. elegans. Genes Dev. 17, 2421–2435 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kerres, A., Jakopec, V. & Fleig, U. The conserved Spc7 protein is required for spindle integrity and links kinetochore complexes in fission yeast. Mol. Biol. Cell 18, 2441–2454 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kwon, M. S., Hori, T., Okada, M. & Fukagawa, T. CENP-C is involved in chromosome segregation, mitotic checkpoint function, and kinetochore assembly. Mol. Biol. Cell 18, 2155–2168 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hori, T., Haraguchi, T., Hiraoka, Y., Kimura, H. & Fukagawa, T. Dynamic behavior of Nuf2–Hec1 complex that localizes to the centrosome and centromere and is essential for mitotic progression in vertebrate cells. J. Cell Sci. 116, 3347–3362 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Liu, S. T. et al. Human CENP-I specifies localization of CENP-F, MAD1 and MAD2 to kinetochores and is essential for mitosis. Nature Cell Biol. 5, 341–345 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Starr, D. A. et al. HZwint-1, a novel human kinetochore component that interacts with HZW10. J. Cell Sci. 113, 1939–1950 (2000).

    CAS  PubMed  Google Scholar 

  66. Kops, G. J. et al. ZW10 links mitotic checkpoint signaling to the structural kinetochore. J. Cell Biol. 169, 49–60 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Karess, R. Rod–Zw10–Zwilch: a key player in the spindle checkpoint. Trends Cell Biol. 15, 386–392 (2005). A review of work on the RZZ complex, which is essential for spindle-checkpoint signalling and dynein recruitment to kinetochores in metazoans.

    Article  CAS  PubMed  Google Scholar 

  68. Mikami, Y., Hori, T., Kimura, H. & Fukagawa, T. The functional region of CENP-H interacts with the Nuf2 complex that localizes to centromere during mitosis. Mol. Cell. Biol. 25, 1958–1970 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Joglekar, A. P., Bouck, D. C., Molk, J. N., Bloom, K. S. & Salmon, E. D. Molecular architecture of a kinetochore–microtubule attachment site. Nature Cell Biol. 8, 581–585 (2006). Quantifies the number of different kinetochore complexes present at the single microtubule-binding kinetochore of budding yeast. The results suggest that multivalent interactions per microtubule are important to build a kinetochore–microtubule attachment site.

    Article  CAS  PubMed  Google Scholar 

  70. DeLuca, J. G., Moree, B., Hickey, J. M., Kilmartin, J. V. & Salmon, E. D. hNuf2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells. J. Cell Biol. 159, 549–555 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McCleland, M. L. et al. The highly conserved Ndc80 complex is required for kinetochore assembly, chromosome congression, and spindle checkpoint activity. Genes Dev. 17, 101–114 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wei, R. R., Sorger, P. K. & Harrison, S. C. Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc. Natl Acad. Sci. USA 102, 5363–5367 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ciferri, C. et al. Architecture of the human NDC80-HEC1 complex, a critical constituent of the outer kinetochore. J. Biol. Chem. 280, 29088–29095 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. DeLuca, J. G. et al. Hec1 and Nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol. Biol. Cell 16, 519–531 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wei, R. R., Al-Bassam, J. & Harrison, S. C. The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nature Struct. Mol. Biol. 14, 54–59 (2007). This paper reports microtubule-binding activity for the NDC80–NUF2 dimer of the Ndc80 complex and shows that the globular conserved region of the NDC80 subunit folds into a calponin-homology domain, observed in the plus-end-binding protein EB1 as well as in actin-binding proteins. A basic N-terminal unstructured region extending from the CH domain, as shown in reference 58 to be phosphorylated by Aurora B kinase, is also important for microtubule binding.

    Article  CAS  Google Scholar 

  76. Wei, R. R. et al. Structure of a central component of the yeast kinetochore: the Spc24p/Spc25p globular domain. Structure 14, 1003–1009 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. VandenBeldt, K. J. et al. Kinetochores use a novel mechanism for coordinating the dynamics of individual microtubules. Curr. Biol. 16, 1217–1223 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Howell, B. J. et al. Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J. Cell Biol. 155, 1159–1172 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang, Z., Tulu, U. S., Wadsworth, P. & Rieder, C. L. Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint. Curr. Biol. 17, 973–980 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Feng, J., Huang, H. & Yen, T. J. CENP-F is a novel microtubule-binding protein that is essential for kinetochore attachments and affects the duration of the mitotic checkpoint delay. Chromosoma 115, 320–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Vergnolle, M. A. & Taylor, S. S. Cenp-F links kinetochores to Ndel1/Nde1/Lis1/Dynein microtubule motor complexes. Curr. Biol. 17, 1173–1179 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Hanisch, A., Sillje, H. H. & Nigg, E. A. Timely anaphase onset requires a novel spindle and kinetochore complex comprising Ska1 and Ska2. EMBO J. 25, 5504–5515 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Emanuele, M. J. & Stukenberg, P. T. Xenopus Cep57 is a novel kinetochore component involved in microtubule attachment. Cell 130, 893–905 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Salic, A., Waters, J. C. & Mitchison, T. J. Vertebrate Shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell 118, 567–578 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Maiato, H., DeLuca, J., Salmon, E. D. & Earnshaw, W. C. The dynamic kinetochore–microtubule interface. J. Cell Sci. 117, 5461–5477 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Howard, J. & Hyman, A. A. Microtubule polymerases and depolymerases. Curr. Opin. Cell Biol. 19, 31–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Maiato, H. et al. Human CLASP1 is an outer kinetochore component that regulates spindle microtubule dynamics. Cell 113, 891–904 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Maiato, H., Khodjakov, A. & Rieder, C. L. Drosophila CLASP is required for the incorporation of microtubule subunits into fluxing kinetochore fibres. Nature Cell Biol. 7, 42–47 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Cheeseman, I. M., Macleod, I., Yates, J. R. 3rd, Oegema, K. & Desai, A. The CENP-F-like proteins HCP-1 and HCP-2 target CLASP to kinetochores to mediate chromosome segregation. Curr. Biol. 15, 771–777 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Tanenbaum, M. E., Galjart, N., van Vugt, M. A. & Medema, R. H. CLIP-170 facilitates the formation of kinetochore–microtubule attachments. EMBO J. 25, 45–57 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Sandblad, L. et al. The Schizosaccharomyces pombe EB1 homolog Mal3p binds and stabilizes the microtubule lattice seam. Cell 127, 1415–1424 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Gard, D. L., Becker, B. E. & Josh Romney, S. MAPping the eukaryotic tree of life: structure, function, and evolution of the MAP215/Dis1 family of microtubule-associated proteins. Int. Rev. Cytol. 239, 179–272 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Lombillo, V. A., Nislow, C., Yen, T. J., Gelfand, V. I. & McIntosh, J. R. Antibodies to the kinesin motor domain and CENP-E inhibit microtubule depolymerization-dependent motion of chromosomes in vitro. J. Cell Biol. 128, 107–115 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. Weaver, B. A. et al. Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. J. Cell Biol. 162, 551–563 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Miranda, J. J., De Wulf, P., Sorger, P. K. & Harrison, S. C. The yeast DASH complex forms closed rings on microtubules. Nature Struct. Mol. Biol. 12, 138–143 (2005).

    Article  CAS  Google Scholar 

  96. Westermann, S. et al. Formation of a dynamic kinetochore–microtubule interface through assembly of the Dam1 ring complex. Mol. Cell 17, 277–290 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Miranda, J. J., King, D. S. & Harrison, S. C. Protein arms in the kinetochore–microtubule interface of the yeast DASH complex. Mol. Biol. Cell 18, 2503–2510 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang, H. W. et al. Architecture of the Dam1 kinetochore ring complex and implications for microtubule-driven assembly and force-coupling mechanisms. Nature Struct. Mol. Biol. 14, 721–726 (2007).

    Article  CAS  Google Scholar 

  99. Westermann, S. et al. The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 440, 565–569 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Asbury, C. L., Gestaut, D. R., Powers, A. F., Franck, A. D. & Davis, T. N. The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement. Proc. Natl Acad. Sci. USA 103, 9873–9878 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Franck, A. D. et al. Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis. Nature Cell Biol. 9, 832–837 (2007). References 95–101 describe results of biochemical, biophysical and structural studies of recombinant Dam1 complex. The results show that this complex is ideally suited to form a molecular coupling device for dynamic microtubules.

    Article  CAS  PubMed  Google Scholar 

  102. Tanaka, K., Kitamura, E., Kitamura, Y. & Tanaka, T. U. Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles. J. Cell Biol. 178, 269–281 (2007). Directly visualizes initial poleward transport of centromeres in living budding yeast cells. Motor-driven sliding along the polymer lattice and depolymerization-driven Dam1 complex-dependent end-on connections both contribute to poleward movement.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sanchez-Perez, I. et al. The DASH complex and Klp5/Klp6 kinesin coordinate bipolar chromosome attachment in fission yeast. EMBO J. 24, 2931–2943 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Alexander, S. P. & Rieder, C. L. Chromosome motion during attachment to the vertebrate spindle: initial saltatory-like behavior of chromosomes and quantitative analysis of force production by nascent kinetochore fibers. J. Cell Biol. 113, 805–815 (1991).

    Article  CAS  PubMed  Google Scholar 

  105. Kapoor, T. M. et al. Chromosomes can congress to the metaphase plate before biorientation. Science 311, 388–391 (2006). Correlative light and electron microscopy in vertebrates reveals a new type of chromosome motility that aids congression, even though sister kinetochores are not connected to opposite spindle poles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tytell, J. D. & Sorger, P. K. Analysis of kinesin motor function at budding yeast kinetochores. J. Cell Biol. 172, 861–874 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Schaar, B. T., Chan, G. K., Maddox, P., Salmon, E. D. & Yen, T. J. CENP-E function at kinetochores is essential for chromosome alignment. J. Cell Biol. 139, 1373–1382 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Abrieu, A., Kahana, J. A., Wood, K. W. & Cleveland, D. W. CENP-E as an essential component of the mitotic checkpoint in vitro. Cell 102, 817–826 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Draviam, V. M. et al. A functional genomic screen identifies a role for TAO1 kinase in spindle-checkpoint signalling. Nature Cell Biol. 9, 556–564 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Baumann, C., Korner, R., Hofmann, K. & Nigg, E. A. PICH, a centromere-associated SNF2 family ATPase, is regulated by Plk1 and required for the spindle checkpoint. Cell 128, 101–114 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Stegmeier, F. et al. Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature 446, 876–881 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Griffis, E. R., Stuurman, N. & Vale, R. D. Spindly, a novel protein essential for silencing the spindle assembly checkpoint, recruits dynein to the kinetochore. J. Cell Biol. 177, 1005–1015 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nature Rev. Mol. Cell Biol. 8, 379–393 (2007). A recent in-depth review of spindle checkpoint activation and silencing.

    Article  CAS  Google Scholar 

  114. Sumara, I. et al. Roles of Polo-like kinase 1 in the assembly of functional mitotic spindles. Curr. Biol. 14, 1712–1722 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Jones, M. H. et al. Chemical genetics reveals a role for Mps1 kinase in kinetochore attachment during mitosis. Curr. Biol. 15, 160–165 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Schmidt, M., Budirahardja, Y., Klompmaker, R. & Medema, R. H. Ablation of the spindle assembly checkpoint by a compund targeting Mps1. EMBO Rep. 6, 866–872 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Meraldi, P. & Sorger, P. K. A dual role for Bub1 in the spindle checkpoint and chromosome congression. EMBO J. 24, 1621–1633 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Johnson, V. L., Scott, M. I., Holt, S. V., Hussein, D. & Taylor, S. S. Bub1 is required for kinetochore localization of BubR1, CENP-E, CENP-F and Mad2, and chromosome congression. J. Cell Sci. 117, 1577–1589 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Lampson, M. A. & Kapoor, T. M. The human mitotic checkpoint protein BubR1 regulates chromosome-spindle attachments. Nature Cell Biol. 7, 93–98 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Lampson, M. A. & Kapoor, T. M. Unraveling cell division mechanisms with small-molecule inhibitors. Nature Chem. Biol. 2, 19–27 (2006).

    Article  CAS  Google Scholar 

  121. Ruchaud, S., Carmena, M. & Earnshaw, W. C. Chromosomal passengers: conducting cell division. Nature Rev. Mol. Cell Biol. 8, 798–812 (2007). A recent in-depth review on chromosomal passenger proteins.

    Article  CAS  Google Scholar 

  122. Sandall, S. et al. A Bir1–Sli15 complex connects centromeres to microtubules and is required to sense kinetochore tension. Cell 127, 1179–1191 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tanaka, T. U. et al. Evidence that the Ipl1–Sli15 (Aurora kinase–INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell 108, 317–329 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Cheeseman, I. M. et al. Phospho-regulation of kinetochore–microtubule attachments by the Aurora kinase Ipl1p. Cell 111, 163–172 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Lan, W. et al. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr. Biol. 14, 273–286 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Andrews, P. D. et al. Aurora B regulates MCAK at the mitotic centromere. Dev. Cell 6, 253–268 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. DeLuca, J. G. et al. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 127, 969–982 (2006). This paper presents in vivo evidence that mutating Aurora B phosphorylation sites on Ndc80 cause chromosome bi-orientation defects. Additionally, an antibody that binds to the globular region of Ndc80 freezes kinetochore–microtubule dynamics and has an opposite effect compared to Ndc80 complex inhibition.

    Article  CAS  PubMed  Google Scholar 

  128. van de Weerdt, B. C. & Medema, R. H. Polo-like kinases: a team in control of the division. Cell Cycle 5, 853–864 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Ahonen, L. J. et al. Polo-like kinase 1 creates the tension-sensing 3F3/2 phosphoepitope and modulates the association of spindle-checkpoint proteins at kinetochores. Curr. Biol. 15, 1078–1089 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Wong, O. K. & Fang, G. Plx1 is the 3F3/2 kinase responsible for targeting spindle checkpoint proteins to kinetochores. J. Cell Biol. 170, 709–719 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kang, Y. H. et al. Self-regulated Plk1 recruitment to kinetochores by the Plk1–PBIP1 interaction is critical for proper chromosome segregation. Mol. Cell 24, 409–422 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Nishino, M. et al. NudC Is required for Plk1 targeting to the kinetochore and chromosome congression. Curr. Biol. 16, 1414–1421 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Trinkle-Mulcahy, L. et al. Time-lapse imaging reveals dynamic relocalization of PP1γ throughout the mammalian cell cycle. Mol. Biol. Cell 14, 107–117 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Pinsky, B. A., Kotwaliwale, C. V., Tatsutani, S. Y., Breed, C. A. & Biggins, S. Glc7/protein phosphatase 1 regulatory subunits can oppose the Ipl1/aurora protein kinase by redistributing Glc7. Mol. Cell. Biol. 26, 2648–2660 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kitajima, T. S. et al. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441, 46–52 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Riedel, C. G. et al. Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441, 53–61 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Tang, Z. et al. PP2A is required for centromeric localization of Sgo1 and proper chromosome segregation. Dev. Cell 10, 575–585 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Huang, H. et al. Tripin/hSgo2 recruits MCAK to the inner centromere to correct defective kinetochore attachments. J. Cell Biol. 177, 413–424 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhang, K. et al. The Set1 methyltransferase opposes Ipl1 Aurora kinase functions in chromosome segregation. Cell 122, 723–734 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Montpetit, B., Hazbun, T. R., Fields, S. & Hieter, P. Sumoylation of the budding yeast kinetochore protein Ndc10 is required for Ndc10 spindle localization and regulation of anaphase spindle elongation. J. Cell Biol. 174, 653–663 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Joseph, J., Tan, S.-H., Karpova, T. S., McNally, J. G. & Dasso, M. SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles. J. Cell Biol. 156, 595–602 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Arnaoutov, A. & Dasso, M. Ran-GTP regulates kinetochore attachment in somatic cells. Cell Cycle 4, 1161–1165 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Hirose, H. et al. Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi. EMBO J. 23, 1267–1278 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Efimov, A. et al. Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-golgi network. Dev. Cell 12, 917–930 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hussein, D. & Taylor, S. S. Farnesylation of CENP-F is required for G2/M progression and degradation after mitosis. J. Cell Sci. 115, 3403–3414 (2002).

    CAS  PubMed  Google Scholar 

  146. Zuccolo, M. et al. The human Nup107–160 nuclear pore subcomplex contributes to proper kinetochore functions. EMBO J. 26, 1853–1864 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Orjalo, A. V. et al. The Nup107–160 nucleoporin complex is required for correct bipolar spindle assembly. Mol. Biol. Cell 17, 3806–3818 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Rasala, B. A., Orjalo, A. V., Shen, Z., Briggs, S. & Forbes, D. J. ELYS is a dual nucleoporin/kinetochore protein required for nuclear pore assembly and proper cell division. Proc. Natl Acad. Sci. USA 103, 17801–17806 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Franz, C. et al. MEL-28/ELYS is required for the recruitment of nucleoporins to chromatin and postmitotic nuclear pore complex assembly. EMBO Rep. 8, 165–172 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Fernandez, A. G. & Piano, F. MEL-28 is downstream of the Ran cycle and is required for nuclear-envelope function and chromatin maintenance. Curr. Biol. 16, 1757–1763 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Dasso, M. Ran at kinetochores. Biochem. Soc. Trans. 34, 711–715 (2006). A review that highlights the emerging connections between the Ran-GTPase cycle, nucleoporins and kinetochores.

    Article  CAS  PubMed  Google Scholar 

  152. Weaver, B. A. & Cleveland, D. W. Does aneuploidy cause cancer? Curr. Opin. Cell Biol. 18, 658–667 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Kops, G. J., Weaver, B. A. & Cleveland, D. W. On the road to cancer: aneuploidy and the mitotic checkpoint. Nature Rev. Cancer 5, 773–785 (2005). A review that discusses the relationships between spindle checkpoint function, aneuploidy and cancer.

    Article  CAS  Google Scholar 

  154. Kuefer, M. U. et al. Characterization of the MLL partner gene AF15q14 involved in t(11;15)(q23;q14). Oncogene 22, 1418–1424 (2003).

    Article  CAS  PubMed  Google Scholar 

  155. Takimoto, M. et al. Frequent expression of new cancer/testis gene D40/AF15q14 in lung cancers of smokers. Br. J. Cancer 86, 1757–1762 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chen, Y., Riley, D. J., Chen, P. L. & Lee, W. H. HEC, a novel nuclear protein rich in leucine heptad repeats specifically involved in mitosis. Mol. Cell. Biol. 17, 6049–6056 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Tomonaga, T. et al. Centromere protein H is up-regulated in primary human colorectal cancer and its overexpression induces aneuploidy. Cancer Res. 65, 4683–4689 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Tomonaga, T. et al. Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res. 63, 3511–3516 (2003).

    CAS  PubMed  Google Scholar 

  159. Saitoh, H. et al. CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 70, 115–125 (1992).

    Article  CAS  PubMed  Google Scholar 

  160. Meluh, P. B. & Koshland, D. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP.-C. Mol. Biol. Cell 6, 793–807 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Moore, L. L. & Roth, M. B. HCP-4, a CENP-C-like protein in Caenorhabditis elegans, is required for resolution of sister centromeres. J. Cell Biol. 153, 1199–1208 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Heeger, S. et al. Genetic interactions of separase regulatory subunits reveal the diverged Drosophila CENP-C homolog. Genes Dev. 19, 2041–2053 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Fukagawa, T. et al. CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells. EMBO J. 20, 4603–4617 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Nishihashi, A. et al. CENP-I is essential for centromere function in vertebrate cells. Dev. Cell 2, 463–476 (2002).

    Article  CAS  PubMed  Google Scholar 

  165. Minoshima, Y. et al. The constitutive centromere component CENP-50 is required for recovery from spindle damage. Mol. Cell. Biol. 25, 10315–10328 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. McAinsh, A. D., Meraldi, P., Draviam, V. M., Toso, A. & Sorger, P. K. The human kinetochore proteins Nnf1R and Mcm21R are required for accurate chromosome segregation. EMBO J. 25, 4033–4049 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to the many people whose work we were unable to cite owing to space constraints. We are grateful to Y. Dong and B. McEwen for providing the electron micrograph of the human kinetochore, and to R. Gassmann, D. Foltz, B. Weaver, P. Maddox, L. Jensen and T. Fukagawa for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Supplementary information

41580_2008_BFnrm2310_MOESM199_ESM.pdf

Supplementary information S1 (table) | Human kinetochore proteins identified to date with their likely homologues in budding yeast, fission yeast, nematodes, fruit fly and plants. (PDF 221 kb)

Related links

Related links

FURTHER INFORMATION

Arshad Desai's homepage

Iain Cheeseman's homepage

Glossary

Transmission electron microscopy

A method that is used to image at high resolution by passing electrons through a sample that has been thinly sectioned and stained with heavy-metal compounds to generate contrast.

High-pressure freezing methods

Methods that are used to prepare samples for electron microscopy in which the sample is quickly cooled to low temperatures under high pressure. Preserves ultrastructure better than chemical fixation techniques.

Electron tomography

A technique in which sections that are larger than those typically used for transmission electron microscopy are imaged at various angles. Provides increased resolution and some three-dimensional imaging capacity.

α-satellite DNA

Repetitive DNA that is found at the centromeres of human cells.

HT1080 cells

Human cells that are used for the generation of artificial human chromosomes.

Dicentric chromosomes

Chromosomes that have two centromeres.

Neocentromeres

Chromosomal sites that do not contain typical repetitive centromeric DNA, but that do acquire centromeric chromatin, can assemble kinetochores, can recruit other centromeric proteins and are transmitted faithfully during meiosis and mitosis.

Acentric

A chromosome or chromosomal fragment that lacks a centromere.

SANT domain

A motif that was identified on the basis of its homology to the DNA-binding domain of c-Myb.

Coiled-coil domain

A protein structural domain that mediates subunit oligomerization or protein–protein interactions. Coiled coils contain between two and five α-helices that twist around each other to form a supercoil.

Minus end

The slower polymerizing end of a microtubule, in which α-tubulin is exposed. In cells, minus ends do not grow — they are either stable or depolymerizing.

Photobleaching assays

Experiments in which a fluorescently labelled protein that is localized to a specific site is exposed to a brief intense pulse of light to bleach the fluorescence, followed by recovery, during which unbleached protein from elsewhere (typically the cytoplasm) replaces the bleached protein. The time required for, and the extent of, the recovery provide information on the local dynamics of the protein at that site.

Calponin-homology domain

An 110-residue domain that is found in many cytoskeletal and signal-transduction proteins.

Plus end

The faster polymerizing end of a microtubule, in which β-tubulin is exposed.

Motor proteins

Mechanochemical enzymes that couple ATP hydrolysis to movement along a polymer lattice. The two major microtubule-directed motor protein families are the kinesins and dyneins.

Seam

Microtubules are composed of a series of linear protofilaments, which laterally associate and close to form a hollow cylindrical polymer. The seam is formed at the point of closure and is characterized by a change in the lateral tubulin–tubulin interactions relative to elsewhere in the polymer.

Cargo

Proteins that are carried along the polymer lattice by motor proteins.

Mitotic checkpoint pathway

The signal transduction pathway that is responsible for detecting chromosomes that are improperly attached to the mitotic spindle and arresting the cell cycle during metaphase until these errors have been corrected.

Helicase

An enzyme that unwinds double-stranded nucleic acids in an energy-dependent manner.

Polo-box domain

The portion of the polo kinase that is responsible for binding to substrates.

GTPase-activating protein

A protein that inactivates small GTP-binding proteins, such as Ras-family members, by increasing their rate of GTP hydrolysis.

AT-hook domain

A nine-amino-acid protein domain that binds to the minor groove of A and T rich DNA.

Nucleoporins

Protein subunits of the nuclear pore complex.

Aneuploidy

The ploidy of a cell refers to the number of chromosome sets that it contains. Aneuploid karyotypes are chromosome complements that are not a simple multiple of the haploid set.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheeseman, I., Desai, A. Molecular architecture of the kinetochore–microtubule interface. Nat Rev Mol Cell Biol 9, 33–46 (2008). https://doi.org/10.1038/nrm2310

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2310

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing