Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The double-stranded-RNA-binding motif: interference and much more

Key Points

  • Many proteins that interact with highly structured RNA contain double-stranded RNA-binding motifs (dsRBMs). Well-known examples include the nucleases RNase III and Dicer, the protein kinase PKR, RNA deaminases (ADARs) and Staufen, a protein that is responsible for mRNA localization.

  • The dsRBM adopts an α–β–β–β–α topology structure with conserved residues at critical locations, particularly in the C-terminal third of the motif. Three regions of the dsRBM are involved in contacting A-form RNA along one face of the helix without wrapping around it.

  • The dsRBM interacts with the RNA duplex without obvious sequence specificity. However, several dsRBM proteins show a high degree of substrate specificity that can be of great biological significance.

  • The dsRBM is associated with 20 other protein domains in proteins from all eukaryotes, most eubacteria, several viruses and one Archaeon. Evolutionarily advanced organisms have a greater number of dsRBM proteins than lower species.

  • When there are several dsRBMs in a single protein, cooperation between them can achieve a higher affinity to RNAs, and some dsRBMs can adopt activities other than dsRNA binding, for example, protein–protein interactions.

  • dsRBM proteins are involved in a myriad of cellular functions, from RNA interference to antiviral mechanisms and other types of post-transcriptional gene regulation. Duplexed RNAs can be substrates, modulators or cargos for dsRBM proteins. There are extensive interactions between dsRBM proteins. Some are involved in the same cellular pathway, such as the interferon response and RNA interference, whereas some seem to modulate the functions of others.

Abstract

RNA duplexes have been catapulted into the spotlight by the discovery of RNA interference and related phenomena. But double-stranded and highly structured RNAs have long been recognized as key players in cell processes ranging from RNA maturation and localization to the antiviral response in higher organisms. Penetrating insights into the metabolism and functions of such RNAs have come from the identification and study of proteins that contain the double-stranded-RNA-binding motif.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Secondary and tertiary structural elements in RNA.
Figure 2: Two views of the dsRBM structure.
Figure 3: Sequence logo of the dsRBM.
Figure 4: Domain structures of dsRBM proteins.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Burkard, M. E., Turner, D. H. & Tinoco, I. Jr in The RNA World (ed. Atkins, J. F.) 675–685 (Cold Spring Harbor Laboratory Press, New York, USA, 1999).

    Google Scholar 

  2. Leontis, N. B., Stombaugh, J. & Westhof, E. The non-Watson–Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 30, 3497–3531 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Draper, D. E. Protein–RNA recognition. Annu. Rev. Biochem. 64, 593–620 (1995).

    CAS  PubMed  Google Scholar 

  4. Nagai, K. RNA–protein interactions. Curr. Opin. Struct. Biol. 2, 131–137 (1992).

    CAS  Google Scholar 

  5. Varani, G. RNA–protein intermolecular recognition. Acc. Chem. Res. 30, 189–195 (1997).

    CAS  Google Scholar 

  6. Draper, D. E. Themes in RNA–protein recognition. J. Mol. Biol. 293, 255–270 (1999).

    CAS  PubMed  Google Scholar 

  7. Perez-Canadillas, J. M. & Varani, G. Recent advances in RNA–protein recognition. Curr. Opin. Struct. Biol. 11, 53–58 (2001).

    CAS  PubMed  Google Scholar 

  8. Hall, K. B. RNA–protein interactions. Curr. Opin. Struct. Biol. 12, 283–288 (2002).

    CAS  PubMed  Google Scholar 

  9. Burd, C. G. & Dreyfuss, G. Conserved structures and diversity of functions of RNA-binding proteins. Science 265, 615–621 (1994).

    CAS  PubMed  Google Scholar 

  10. Nagai, K. RNA–protein complexes. Curr. Opin. Struct. Biol. 6, 53–61 (1996).

    CAS  PubMed  Google Scholar 

  11. Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4Å resolution. Science 289, 905–920 (2000).

    CAS  PubMed  Google Scholar 

  12. Wimberly, B. T. et al. Structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000).

    CAS  PubMed  Google Scholar 

  13. Yusupov, M. M. et al. Crystal structure of the ribosome at 5.5Å resolution. Science 292, 883–896 (2001).

    CAS  PubMed  Google Scholar 

  14. Harms, J. et al. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107, 679–688 (2001).

    CAS  PubMed  Google Scholar 

  15. St Johnston, D., Brown, N. H., Gall, J. G. & Jantsch, M. A conserved double-stranded RNA-binding domain. Proc. Natl Acad. Sci. USA 89, 10979–10983 (1992). Describes the first biochemical identification and sequence alignment of the double-stranded-RNA-binding motif.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. McCormack, S. J., Thomis, D. C. & Samuel, C. E. Mechanism of interferon action: identification of a RNA binding domain within the N-terminal region of the human RNA-dependent P1/eIF-2α protein kinase. Virology 188, 47–56 (1992).

    CAS  PubMed  Google Scholar 

  17. Green, S. R. & Mathews, M. B. Two RNA binding motifs in the double-stranded RNA activated protein kinase, DAI. Genes Dev. 6, 2478–2490 (1992).

    CAS  PubMed  Google Scholar 

  18. Kharrat, A., Macias, M. J., Gibson, T. J., Nilges, M. & Pastore, A. Structure of the dsRNA binding domain of E. coli RNase III. EMBO J. 14, 3572–3584 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bycroft, M., Grünert, S., Murzin, A. G., Proctor, M. & St Johnston, D. NMR solution structure of a dsRNA binding domain from Drosophila staufen protein reveals homology to the N-terminal domain of ribosomal protein S5. EMBO J. 14, 3563–3571 (1995). References 18 and 19 are two back-to-back papers that first characterized the structure of the dsRBM.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ramos, A. et al. RNA recognition by a Staufen double-stranded RNA-binding domain. EMBO J. 19, 997–1009 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nanduri, S., Carpick, B. W., Yang, Y., Williams, B. R. & Qin, J. Structure of the double-stranded RNA-binding domain of the protein kinase PKR reveals the molecular basis of its dsRNA-mediated activation. EMBO J. 17, 5458–5465 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, H., Henras, A., Chanfreau, G. & Feigon, J. Structural basis for recognition of the AGNN tetraloop RNA fold by the double-stranded RNA-binding domain of Rnt1p RNase III. Proc. Natl Acad. Sci. USA. 101, 8307–8312 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ryter, J. M. & Schultz, S. C. Molecular basis of double-stranded RNA-protein interactions: structure of a dsRNA-binding domain complexed with dsRNA. EMBO J. 17, 7505–7513 (1998). Atomic-level description of interactions of the dsRBM with RNA.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Blaszczyk, J. et al. Noncatalytic assembly of ribonuclease III with double-stranded RNA. Structure 12, 457–466 (2004).

    CAS  PubMed  Google Scholar 

  25. Manche, L., Green, S. R., Schmedt, C. & Mathews, M. B. Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol. Cell. Biol. 12, 5238–5248 (1992). Defines the dsRNA-length dependence for PKR binding and activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bevilacqua, P. C. & Cech, T. R. Minor-groove recognition of double-stranded RNA by the double-stranded RNA-binding domain from the RNA-activated protein kinase PKR. Biochemistry 35, 9983–9994 (1996).

    CAS  PubMed  Google Scholar 

  27. Hung, M. L., Chao, P. & Chang, K. Y. dsRBM1 and a proline-rich domain of RNA helicase A can form a composite binder to recognize a specific dsDNA. Nucleic Acids Res. 31, 5741–5753 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Williamson, J. R. Induced fit in RNA-protein recognition. Nature Struct. Biol. 7, 834–837 (2000).

    CAS  PubMed  Google Scholar 

  29. Leulliot, N. & Varani, G. Current topics in RNA-protein recognition: control of specificity and biological function through induced fit and conformational capture. Biochemistry 40, 7947–7956 (2001).

    CAS  PubMed  Google Scholar 

  30. Kebbekus, P., Draper, D. E. & Hagerman, P. Persistence length of RNA. Biochemistry 34, 4354–4357 (1995).

    CAS  PubMed  Google Scholar 

  31. Auffinger, P. & Westhof, E. Water and ion binding around r(UpA)12 and d(TpA)12 oligomers — comparison with RNA and DNA (CpG)12 duplexes. J. Mol. Biol. 305, 1057–1072 (2001).

    CAS  PubMed  Google Scholar 

  32. Bevilacqua, P. C., George, C. X., Samuel, C. E. & Cech, T. R. Binding of the protein kinase PKR to RNAs with secondary structure defects: role of the tandem A–G mismatch and noncontiguous helixes. Biochemistry 37, 6303–6316 (1998). Describes the isolation, through an in vitro selection technique, of a family of structured RNAs that can interact with the dsRBMs of PKR.

    CAS  PubMed  Google Scholar 

  33. Clarke, P. A., Sharp, N. A. & Clemens, M. J. Translational control by the Epstein-Barr virus small RNA EBER-1. Eur. J. Biochem. 193, 635–641 (1990).

    CAS  PubMed  Google Scholar 

  34. Vuyisich, M., Spanggord, R. J. & Beal, P. A. The binding site of the RNA-dependent protein kinase (PKR) on EBER1 RNA from Epstein-Barr virus. EMBO Rep. 3, 622–627 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tian, B. et al. Expanded CUG repeat RNAs form hairpins that activate the double-stranded-RNA-dependent protein kinase PKR. RNA 6, 79–87 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ma, Y. & Mathews, M. B. Secondary and tertiary structure in the central domain of adenovirus type 2 VA RNA I. RNA 2, 937–951 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ben-Asouli, Y., Banai, Y., Pel-Or, Y., Shir, A. & Kaempfer, R. Human interferon-γ mRNA autoregulates its translation through a pseudoknot that activates the interferon-inducible protein kinase PKR. Cell 108, 221–232 (2002).

    CAS  PubMed  Google Scholar 

  38. Ketting, R. F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Knight, S. W. & Bass, B. L. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293, 2269–2271 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee, Y., Jeon, K., Lee, J. T., Kim, S. & Kim, V. N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21, 4663–4670 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zheng, X. & Bevilacqua, P. C. Straightening of bulged RNA by the double-stranded RNA-binding domain from the protein kinase PKR. Proc. Natl Acad. Sci. USA 97, 14162–14167 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    CAS  PubMed  Google Scholar 

  43. Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    CAS  PubMed  Google Scholar 

  44. Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).

    CAS  PubMed  Google Scholar 

  45. Calin-Jageman, I. & Nicholson, A. W. RNA structure-dependent uncoupling of substrate recognition and cleavage by Escherichia coli ribonuclease III. Nucleic Acids Res. 31, 2381–2392 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, K. & Nicholson, A. W. Regulation of ribonuclease III processing by double-helical sequence antideterminants. Proc. Natl Acad. Sci. USA 94, 13437–13441 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Castrignano, T., Chillemi, G., Varani, G. & Desideri, A. Molecular dynamics simulation of the RNA complex of a double-stranded RNA-binding domain reveals dynamic features of the intermolecular interface and its hydration. Biophys. J. 83, 3542–3552 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Higuchi, M. et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406, 78–81 (2000). Shows that the ADAR2 knockout causes a lethal phenotype in mice because of defective editing of a specific ion-channel mRNA.

    CAS  PubMed  Google Scholar 

  49. Ferrandon, D., Elphick, L., Nusslein-Volhard, C. & St Johnston, D. Staufen protein associates with the 3′UTR of bicoid mRNA to form particles that move in a microtubule-dependent manner. Cell 79, 1221–1232 (1994).

    CAS  PubMed  Google Scholar 

  50. Nagel, R. & Ares, M. Jr Substrate recognition by a eukaryotic RNase III: the double-stranded RNA-binding domain of Rnt1p selectively binds RNA containing a 5′-AGNN-3′ tetraloop. RNA 6, 1142–1156 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Balachandran, S. et al. Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity 13, 129–141 (2000).

    CAS  PubMed  Google Scholar 

  52. Plasterk, R. H. RNA silencing: the genome's immune system. Science 296, 1263–1265 (2002).

    CAS  PubMed  Google Scholar 

  53. Zamore, P. D. Ancient pathways programmed by small RNAs. Science 296, 1265–1269 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Lamontagne, B. & Elela, S. A. Evaluation of the RNA determinants for bacterial and yeast RNase III binding and cleavage. J. Biol. Chem. 279, 2231–2241 (2004).

    CAS  PubMed  Google Scholar 

  55. Saunders, L. R. & Barber, G. N. The dsRNA binding protein family: critical roles, diverse cellular functions. FASEB J. 17, 961–983 (2003).

    CAS  PubMed  Google Scholar 

  56. Tian, B. & Mathews, M. B. Phylogenetics and functions of the double-stranded RNA-binding motif: a genomic survey. Prog. Nucleic Acid Res. Mol. Biol. 74, 123–158 (2003). Survey of the genomes of organisms from several important taxa for dsRBM-containing proteins using a bioinformatics approach.

    CAS  PubMed  Google Scholar 

  57. Nicholson, A. W. Function, mechanism and regulation of bacterial ribonucleases. FEMS Microbiol. Rev. 23, 371–390 (1999).

    CAS  PubMed  Google Scholar 

  58. Carmell, M. A. & Hannon, G. J. RNase III enzymes and the initiation of gene silencing. Nature Struct. Mol. Biol. 11, 214–218 (2004).

    CAS  Google Scholar 

  59. Fraser, C. M. et al. The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403 (1995).

    CAS  PubMed  Google Scholar 

  60. Sun, W., Jun, E. & Nicholson, A. W. Intrinsic double-stranded-RNA processing activity of Escherichia coli ribonuclease III lacking the dsRNA-binding domain. Biochemistry 40, 14976–14984 (2001).

    CAS  PubMed  Google Scholar 

  61. Aphasizhev, R. et al. Isolation of a U-insertion/deletion editing complex from Leishmania tarentolae mitochondria. EMBO J. 22, 913–924 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Deppenmeier, U. et al. The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J. Mol. Microbiol. Biotechnol. 4, 453–461 (2002).

    CAS  PubMed  Google Scholar 

  63. Tian, B. & Mathews, M. B. Functional characterization of and cooperation between the double-stranded RNA-binding motifs of the protein kinase PKR. J. Biol. Chem. 276, 9936–9944 (2001).

    CAS  PubMed  Google Scholar 

  64. Patel, R. C. & Sen, G. C. PACT, a protein activator of the interferon-induced protein kinase, PKR. EMBO J. 17, 4379–4390 (1998). Describes the dsRBM-containing protein PACT, which binds and activates another dsRBM-containing protein, PKR.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Peters, G. A., Hartmann, R., Qin, J. & Sen, G. C. Modular structure of PACT: distinct domains for binding and activating PKR. Mol. Cell. Biol. 21, 1908–1920 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Micklem, D. R., Adams, J., Grunert, S. & St Johnston, D. Distinct roles of two conserved Staufen domains in oskar mRNA localization and translation. EMBO J. 19, 1366–1377 (2000). Exploration of the biological and biochemical roles of the Staufen dsRBMs.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zamore, P. D. Thirty-three years later, a glimpse at the ribonuclease III active site. Mol. Cell 8, 1158–1160 (2001).

    CAS  PubMed  Google Scholar 

  68. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001). Shows the role of Dicer in RNAi.

    CAS  PubMed  Google Scholar 

  69. Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).

    CAS  PubMed  Google Scholar 

  70. Filippov, V., Solovyev, V., Filippova, M. & Gill, S. S. A novel type of RNase III family proteins in eukaryotes. Gene 245, 213–221 (2000).

    CAS  PubMed  Google Scholar 

  71. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425 415–419 (2003).

    CAS  PubMed  Google Scholar 

  72. Liu, Q. et al. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301, 1921–1925 (2003).

    CAS  PubMed  Google Scholar 

  73. Tabara, H., Yigit, E., Siomi, H. & Mello, C. C. The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell 109, 861–871 (2002). References 72 and 73 show that the dsRBM-containing proteins R2D2 and RDE-4 function in RNAi.

    CAS  PubMed  Google Scholar 

  74. Samuel, C. E. Antiviral actions of interferons. Clin. Microbiol. Rev. 14, 778–809 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Keegan, L. P., Leroy, A., Sproul, D. & O'Connell, M. A. Adenosine deaminases acting on RNA (ADARs): RNA-editing enzymes. Genome Biol. 5, 209 (2004).

    PubMed  PubMed Central  Google Scholar 

  76. Kaufman, R. J. in Translational Control of Gene Expression (ed. Mathews, M. B.) 503–528 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2000).

    Google Scholar 

  77. Williams, B. R. Signal integration via PKR. Sci. STKE 2001, RE2 (2001).

  78. Levanon, E. Y. et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nature Biotechnol. 22, 1001–1005 (2004).

    CAS  Google Scholar 

  79. Rubin, C. M., Kimura, R. H. & Schmid, C. W. Selective stimulation of translational expression by Alu RNA. Nucleic Acids Res. 30, 3253–3261 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Li, H., Li, W. X. & Ding, S. W. Induction and suppression of RNA silencing by an animal virus. Science 296, 1319–1321 (2002).

    CAS  PubMed  Google Scholar 

  81. Adelman, Z. N. et al. RNA silencing of dengue virus type 2 replication in transformed C6/36 mosquito cells transcribing an inverted-repeat RNA derived from the virus genome. J. Virol. 76, 12925–12933 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Semizarov, D. et al. Specificity of short interfering RNA determined through gene expression signatures. Proc. Natl Acad. Sci. USA 100, 6347–6352 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Chi, J. T. et al. Genomewide view of gene silencing by small interfering RNAs. Proc. Natl Acad. Sci. USA 100, 6343–6346 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Bridge, A. J., Pebernard, S., Ducraux, A., Nicoulaz, A. L. & Iggo, R. Induction of an interferon response by RNAi vectors in mammalian cells. Nature Genet. 34, 263–264 (2003).

    CAS  PubMed  Google Scholar 

  85. Sledz, C. A., Holko, M., de Veer, M. J., Silverman, R. H. & Williams, B. R. Activation of the interferon system by short-interfering RNAs. Nature Cell Biol. 5, 834–839 (2003).

    CAS  PubMed  Google Scholar 

  86. Persengiev, S. P., Zhu, X. & Green, M. R. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 10, 12–18 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Davies, M. V., Chang, H. W., Jacobs, B. L. & Kaufman, R. J. The E3L and K3L vaccinia virus gene products stimulate translation through inhibition of the double-stranded RNA-dependent protein kinase by different mechanisms. J. Virol. 67, 1688–1692 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kim, Y. G., Lowenhaupt, K., Oh, D. B., Kim, K. K. & Rich, A. Evidence that vaccinia virulence factor E3L binds to Z–DNA in vivo: Implications for development of a therapy for poxvirus infection. Proc. Natl Acad. Sci. USA 101, 1514–1518 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Tonkin, L. A. & Bass, B. L. Mutations in RNAi rescue aberrant chemotaxis of ADAR mutants. Science 302, 1725 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Scadden, A. D. & Smith, C. W. RNAi is antagonized by A→I hyper-editing. EMBO Rep. 2, 1107–1111 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Reichman, T. W., Muniz, L. C. & Mathews, M. B. The RNA binding protein nuclear factor 90 functions as both a positive and negative regulator of gene expression in mammalian cells. Mol. Cell. Biol. 22, 343–356 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Reichman, T. W. & Mathews, M. B. in Handbook of Cell Signaling Vol. 3 (eds Bradshaw, R. A. & Dennis, E. A.) 335–342 (Academic Press, San Diego, USA, 2003)

    Google Scholar 

  93. Sun, C. T. et al. Transcription repression of human hepatitis B virus genes by negative regulatory element-binding protein/SON. J. Biol. Chem. 276, 24059–24067 (2001).

    CAS  PubMed  Google Scholar 

  94. Nourbakhsh, M. & Hauser, H. Constitutive silencing of IFN-β promoter is mediated by NRF (NF-κB-repressing factor), a nuclear inhibitor of NF-κB. EMBO J. 18, 6415–6425 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhou, K. et al. RNA helicase A interacts with dsDNA and topoisomerase IIα. Nucleic Acids Res. 31, 2253–2260 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. St Johnston, D., Beuchle, D. & Nusslein-Volhard, C. Staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell 66, 51–63 (1991).

    CAS  PubMed  Google Scholar 

  97. Dubnau, J. et al. The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr. Biol. 13, 286–296 (2003).

    CAS  PubMed  Google Scholar 

  98. Mallardo, M. et al. Isolation and characterization of Staufen-containing ribonucleoprotein particles from rat brain. Proc. Natl Acad. Sci. USA 100, 2100–2105 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Desterro, J. M. et al. Dynamic association of RNA-editing enzymes with the nucleolus. J. Cell Sci. 116, 1805–1818 (2003).

    CAS  PubMed  Google Scholar 

  100. Sansam, C. L., Wells, K. S. & Emeson, R. B. Modulation of RNA editing by functional nucleolar sequestration of ADAR2. Proc. Natl Acad. Sci. USA 100, 14018–14023 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kostura, M. & Mathews, M. B. Purification and activation of the double-stranded RNA-dependent eIF-2 kinase DAI. Mol. Cell. Biol. 9, 1576–1586 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Liao, H. J., Kobayashi, R. & Mathews, M. B. Activities of adenovirus virus-associated RNAs: purification and characterization of RNA binding proteins. Proc. Natl. Acad. Sci. USA 95, 8514–8519 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Eckmann, C. R. & Jantsch, M. F. Xlrbpa, a double-stranded RNA-binding protein associated with ribosomes and heterogeneous nuclear RNPs. J. Cell Biol. 138, 239–253 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Eckmann, C. R., Neunteufl, A., Pfaffstetter, L. & Jantsch, M. F. The human but not the Xenopus RNA-editing enzyme ADAR1 has an atypical nuclear localization signal and displays the characteristics of a shuttling protein. Mol. Biol. Cell 12, 1911–1924 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Shim, J., Lim, H., Yates, J. R. & Karin, M. Nuclear export of NF90 is required for interleukin-2 mRNA stabilization. Mol. Cell 10, 1331–1344 (2002).

    CAS  PubMed  Google Scholar 

  106. Poulsen, H., Nilsson, J., Damgaard, C. K., Egebjerg, J. & Kjems, J. CRM1 mediates the export of ADAR1 through a nuclear export signal within the Z-DNA binding domain. Mol. Cell. Biol. 21, 7862–7771 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Nie, Y., Zhao, Q., Su, Y. & Yang, J. H. Subcellular distribution of ADAR1 isoforms is synergistically determined by three nuclear discrimination signals and a regulatory motif. J. Biol. Chem. 279, 13249–13255 (2004).

    CAS  PubMed  Google Scholar 

  108. Brownawell, A. M. & Macara, I. G. Exportin-5, a novel karyopherin, mediates nuclear export of double-stranded RNA binding proteins. J. Cell Biol. 156, 53–64 (2002). Shows that the nuclear export protein exportin 5 interacts with dsRBMs from several proteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Yi, R., Qin, Y., Macara, I. G. & Cullen, B. R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E. & Kutay, U. Nuclear export of microRNA precursors. Science 303, 95–98 (2004).

    CAS  PubMed  Google Scholar 

  111. Bohnsack, M. T., Czaplinski, K. & Gorlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10, 185–191 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Bohnsack, M. T. et al. Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm. EMBO J. 21, 6205–6215 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Macchi, P. et al. The brain-specific double-stranded RNA-binding protein Staufen2: nucleolar accumulation and isoform-specific exportin-5-dependent export. J. Biol. Chem. 279, 31440–31444 (2004).

    CAS  PubMed  Google Scholar 

  114. Hitti, E., Neunteufl, A. & Jantsch, M. F. The double-stranded RNA-binding protein X1rbpa promotes RNA strand annealing. Nucleic Acids Res. 26, 4382–4388 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Jammi, N. V. & Beal, P. A. Phosphorylation of the RNA-dependent protein kinase regulates its RNA-binding activity. Nucleic Acids Res. 29, 3020–3029 (2001).

    CAS  PubMed  Google Scholar 

  116. Saenger, W. Principles of Nucleic Acid Structure (ed. Cantor, C. R.) (Springer, New York, 1984).

    Google Scholar 

  117. Weeks, K. M. & Crothers, D. M. Major groove accessibility of RNA. Science 261, 1574–1577 (1993).

    CAS  PubMed  Google Scholar 

  118. Seeman, N. C., Rosenberg, J. M. & Rich, A. Sequence-specific recognition of double helical nucleic acids by proteins. Proc. Natl Acad. Sci. USA. 73, 804–808 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Kielkopf, C. L. et al. A structural basis for recognition of A·T and T·A base pairs in the minor groove of B-DNA. Science 282, 111–115 (1998).

    CAS  PubMed  Google Scholar 

  120. Kool, E. T. Hydrogen bonding, base stacking, and steric effects in DNA replication. Annu. Rev. Biophys. Biomol. Struct. 30, 1–22 (2001).

    CAS  PubMed  Google Scholar 

  121. Novina, C. D. & Sharp, P. A. The RNAi revolution. Nature 430, 161–164 (2004).

    CAS  PubMed  Google Scholar 

  122. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    CAS  PubMed  Google Scholar 

  123. Ullu, E., Tschudi, C. & Chakraborty, T. RNA interference in protozoan parasites. Cell. Microbiol. 6, 509–519 (2004).

    CAS  PubMed  Google Scholar 

  124. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  PubMed  Google Scholar 

  125. Turner, D. H. Thermodynamics of base pairing. Curr. Opin. Struct. Biol. 6, 299–304 (1996).

    CAS  PubMed  Google Scholar 

  126. Brion, P. & Westhof, E. Hierarchy and dynamics of RNA folding. Annu. Rev. Biophys. Biomol. Struct. 26, 113–137 (1997).

    CAS  PubMed  Google Scholar 

  127. Tinoco, I. Jr & Bustamante, C. How RNA folds. J. Mol. Biol. 293, 271–281 (1999).

    CAS  PubMed  Google Scholar 

  128. Schuster–Bockler, B., Schultz, J. & Rahmann, S. HMM Logos for visualization of protein families. BMC Bioinformatics 5, 7 (2004).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. Golden at Purdue University for assistance with figure 2 and H. Zhang at New Jersey Medical School for assistance with figure 4. Support from the following funding agencies is acknowledged: from the National Institutes of Health to P.C.B. and M.B.M. and from the American Cancer Society to A.D.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Mathews.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Flybase

Drosha

R2D2

Staufen

Interpro

dsRBD

RNB

SwissProt

ADAR1

ADAR2

Dicer

MRPL44

NF90

NRF

PACT

PKR

TRBP

Xlrbpa

FURTHER INFORMATION

Michael Mathews' laboratory

Bin Tian's laboratory

Glossary

RNA-RECOGNITION MOTIF

(RRM). This motif is among the most common in eukaryotic proteins. It usually comprises 80–90 amino acids, forming a β–α–β–β–α–β structure. Many proteins that contain RRMs bind RNA in a sequence-specific manner.

RNASE III

An endoribonuclease that cleaves RNA substrates containing regular double-helical or stem-loop structures.

APTAMER

An RNA, either engineered or natural, that forms a precise three-dimensional structure and selectively binds a target molecule, for example a dsRBM-containing protein.

3′ UNTRANSLATED REGION

(3′ UTR). This is the sequence of a messenger RNA that is located downstream of the stop codon.

HELICAL CHIMAERA

A helix in which one of the strands has a mixture of ribose and deoxyribose nucleotides.

ANTIDETERMINANTS

Sequences that block the binding of a protein to an otherwise suitable site, first defined in tRNAs and later in RNase-III substrates.

ADENOSINE DEAMINASE

An enzyme that catalyses adenosine-to-inosine conversion in an RNA substrate, a process also known as RNA editing.

Z-α-DOMAIN

A protein domain that binds left-handed Z-form DNA, which is believed to occur transiently in the cell during gene transcription.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, B., Bevilacqua, P., Diegelman-Parente, A. et al. The double-stranded-RNA-binding motif: interference and much more. Nat Rev Mol Cell Biol 5, 1013–1023 (2004). https://doi.org/10.1038/nrm1528

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1528

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing