Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitonuclear communication in homeostasis and stress

Key Points

  • Mitochondria carry out crucial cellular functions such as energy harvesting. They possess their own genome, encoding 13 proteins, although most of the 1,200 mitochondrial proteins originate from the nucleus. Therefore, the nucleus and mitochondria have to constantly communicate to adjust their activities in order to ensure cellular homeostasis and adaptation to mitochondrial stress. This communication is defined as mitonuclear communication.

  • The nucleus modulates gene expression and mitochondrial function through anterograde regulation signalling. Conversely, mitochondria can elicit a retrograde response, on the basis of energetic cues, ROS or calcium signalling, that activates the expression of nuclear genes to respond and adapt to those cellular conditions.

  • Proteostatic stress in the mitochondria can initiate many feedback responses, such as the mitochondrial unfolded protein response (UPRmt), the proteolytic stress response and the heat shock response, which directly modulate nuclear gene expression and are involved in alleviating the stress.

  • In order to induce a more general adaptation to a cellular state, mitochondrial stress can trigger the integrated stress response (ISR), which reduces cytosolic protein synthesis globally and induces the expression of cellular stress response genes.

  • Mitochondrial stress can be signalled to other cells of the organism by extracellular cues, such as the so-called mitokines, to orchestrate the coordinated adaptation of the whole organism to stress.

  • Given their central role in cellular metabolism and in the maintenance of cellular homeostasis, mitochondria are closely involved in the ageing process. Therefore, several mitochondrial stress and mitonuclear communication pathways modulate lifespan across species.

Abstract

Mitochondria participate in crucial cellular processes such as energy harvesting and intermediate metabolism. Although mitochondria possess their own genome — a vestige of their bacterial origins and endosymbiotic evolution — most mitochondrial proteins are encoded in the nucleus. The expression of the mitochondrial proteome hence requires tight coordination between the two genomes to adapt mitochondrial function to the ever-changing cellular milieu. In this Review, we focus on the pathways that coordinate the communication between mitochondria and the nucleus during homeostasis and mitochondrial stress. These pathways include nucleus-to-mitochondria (anterograde) and mitochondria-to-nucleus (retrograde) communication, mitonuclear feedback signalling and proteostasis regulation, the integrated stress response and non-cell-autonomous communication. We discuss how mitonuclear communication safeguards cellular and organismal fitness and regulates lifespan.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mitonuclear communication.
Figure 2: Anterograde regulation.
Figure 3: The retrograde response.
Figure 4: Mitonuclear feedback.
Figure 5: The integrated stress response.

Similar content being viewed by others

References

  1. Friedman, J. R. & Nunnari, J. Mitochondrial form and function. Nature 505, 335–343 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wallace, D. C. Mitochondria, bioenergetics, and the epigenome in eukaryotic and human evolution. Cold Spring Harb. Symp. Quant. Biol. 74, 383–393 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pagliarini, D. J. et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112–123 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mercer, T. R. et al. The human mitochondrial transcriptome. Cell 146, 645–658 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dhar, S. S., Ongwijitwat, S. & Wong-Riley, M. T. Nuclear respiratory factor 1 regulates all ten nuclear-encoded subunits of cytochrome c oxidase in neurons. J. Biol. Chem. 283, 3120–3129 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Virbasius, J. V. & Scarpulla, R. C. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc. Natl Acad. Sci. USA 91, 1309–1313 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gleyzer, N., Vercauteren, K. & Scarpulla, R. C. Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol. Cell. Biol. 25, 1354–1366 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blesa, J. R., Prieto-Ruiz, J. A., Hernandez, J. M. & Hernandez-Yago, J. NRF-2 transcription factor is required for human TOMM20 gene expression. Gene 391, 198–208 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Peralta, S., Wang, X. & Moraes, C. T. Mitochondrial transcription: lessons from mouse models. Biochim. Biophys. Acta 1819, 961–969 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Richter-Dennerlein, R., Dennerlein, S. & Rehling, P. Integrating mitochondrial translation into the cellular context. Nat. Rev. Mol. Cell Biol. 16, 586–592 (2015).

    Article  PubMed  Google Scholar 

  11. Wang, Y. X. et al. Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell 113, 159–170 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka, T. et al. Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc. Natl Acad. Sci. USA 100, 15924–15929 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Michalik, L. et al. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol. Rev. 58, 726–741 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Dufour, C. R. et al. Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRα and γ. Cell Metab. 5, 345–356 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Alaynick, W. A. et al. ERRγ directs and maintains the transition to oxidative metabolism in the postnatal heart. Cell Metab. 6, 13–24 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Mouchiroud, L., Eichner, L. J., Shaw, R. J. & Auwerx, J. Transcriptional coregulators: fine-tuning metabolism. Cell Metab. 20, 26–40 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fernandez-Marcos, P. J. & Auwerx, J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr. 93, 884S–890S (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Handschin, C. & Spiegelman, B. M. Peroxisome proliferator-activated receptor γ coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr. Rev. 27, 728–735 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Yamamoto, H. et al. NCoR1 is a conserved physiological modulator of muscle mass and oxidative function. Cell 147, 827–839 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Seth, A. et al. The transcriptional corepressor RIP140 regulates oxidative metabolism in skeletal muscle. Cell Metab. 6, 236–245 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Canto, C. et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056–1060 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Canto, C. et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11, 213–219 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Garcia-Roves, P. M., Osler, M. E., Holmstrom, M. H. & Zierath, J. R. Gain-of-function R225Q mutation in AMP-activated protein kinase γ3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle. J. Biol. Chem. 283, 35724–35734 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Wu, H. et al. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296, 349–352 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Woods, A. et al. Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2, 21–33 (2005). References 21–25 give examples of how different kinases signal to induce mitochondrial biogenesis.

    Article  CAS  PubMed  Google Scholar 

  26. Sahin, E. et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470, 359–365 (2011). A description of how telomere dysfunction can initiate reprogramming of mitochondrial regulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luo, X. & Kraus, W. L. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev. 26, 417–432 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bai, P. et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13, 461–468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Canto, C. et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 15, 838–847 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jazwinski, S. M. The retrograde response: when mitochondrial quality control is not enough. Biochim. Biophys. Acta 1833, 400–409 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, Z. & Butow, R. A. Mitochondrial retrograde signaling. Annu. Rev. Genet. 40, 159–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Sekito, T., Thornton, J. & Butow, R. A. Mitochondria-to-nuclear signaling is regulated by the subcellular localization of the transcription factors Rtg1p and Rtg3p. Mol. Biol. Cell 11, 2103–2115 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jazwinski, S. M. & Kriete, A. The yeast retrograde response as a model of intracellular signaling of mitochondrial dysfunction. Front. Physiol. 3, 139 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Friis, R. M. et al. Rewiring AMPK and mitochondrial retrograde signaling for metabolic control of aging and histone acetylation in respiratory-defective cells. Cell Rep. 7, 565–574 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Heeren, G. et al. The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back-signaling via TOR1. Aging 1, 622–636 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Caballero, A. et al. Absence of mitochondrial translation control proteins extends life span by activating sirtuin-dependent silencing. Mol. Cell 42, 390–400 (2011). References 34–36 give examples of energetic retrograde signals in yeast involving the Ampk, TOR and Sir2 pathways.

    Article  CAS  PubMed  Google Scholar 

  37. Curtis, R., O'Connor, G. & DiStefano, P. S. Aging networks in Caenorhabditis elegans: AMP-activated protein kinase (aak-2) links multiple aging and metabolism pathways. Aging Cell 5, 119–126 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Apfeld, J., O'Connor, G., McDonagh, T., DiStefano, P. S. & Curtis, R. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev. 18, 3004–3009 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Edwards, C. B., Copes, N., Brito, A. G., Canfield, J. & Bradshaw, P. C. Malate and fumarate extend lifespan in Caenorhabditis elegans. PLoS ONE 8, e58345 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gallo, M., Park, D. & Riddle, D. L. Increased longevity of some C. elegans mitochondrial mutants explained by activation of an alternative energy-producing pathway. Mech. Ageing Dev. 132, 515–518 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Chin, R. M. et al. The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510, 397–401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456–461 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Lerner, C. et al. Reduced mammalian target of rapamycin activity facilitates mitochondrial retrograde signaling and increases life span in normal human fibroblasts. Aging Cell 12, 966–977 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Rizzuto, R., De Stefani, D., Raffaello, A. & Mammucari, C. Mitochondria as sensors and regulators of calcium signalling. Nat. Rev. Mol. Cell Biol. 13, 566–578 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Arnould, T. et al. CREB activation induced by mitochondrial dysfunction is a new signaling pathway that impairs cell proliferation. EMBO J. 21, 53–63 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Luo, Y., Bond, J. D. & Ingram, V. M. Compromised mitochondrial function leads to increased cytosolic calcium and to activation of MAP kinases. Proc. Natl Acad. Sci. USA 94, 9705–9710 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Amuthan, G. et al. Mitochondrial stress-induced calcium signaling, phenotypic changes and invasive behavior in human lung carcinoma A549 cells. Oncogene 21, 7839–7849 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Srinivasan, S. et al. Disruption of cytochrome c oxidase function induces the Warburg effect and metabolic reprogramming. Oncogene http://dx.doi.org/10.1038/onc.2015.227, (2015).

  49. Biswas, G., Anandatheerthavarada, H. K., Zaidi, M. & Avadhani, N. G. Mitochondria to nucleus stress signaling: a distinctive mechanism of NFκB/Rel activation through calcineurin-mediated inactivation of IκBβ. J. Cell Biol. 161, 507–519 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Biswas, G. et al. Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: a novel mode of inter-organelle crosstalk. EMBO J. 18, 522–533 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Formentini, L., Sanchez-Arago, M., Sanchez-Cenizo, L. & Cuezva, J. M. The mitochondrial ATPase inhibitory factor 1 triggers a ROS-mediated retrograde prosurvival and proliferative response. Mol. Cell 45, 731–742 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Amuthan, G. et al. Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion. EMBO J. 20, 1910–1920 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lim, J. H. et al. Mitochondrial dysfunction induces aberrant insulin signalling and glucose utilisation in murine C2C12 myotube cells. Diabetologia 49, 1924–1936 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Guha, M., Fang, J. K., Monks, R., Birnbaum, M. J. & Avadhani, N. G. Activation of Akt is essential for the propagation of mitochondrial respiratory stress signaling and activation of the transcriptional coactivator heterogeneous ribonucleoprotein A2. Mol. Biol. Cell 21, 3578–3589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schieber, M. & Chandel, N. S. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shadel, G. S. & Horvath, T. L. Mitochondrial ROS signaling in organismal homeostasis. Cell 163, 560–569 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Miyadera, H. et al. Altered quinone biosynthesis in the long-lived clk-1 mutants of Caenorhabditis elegans. J. Biol. Chem. 276, 7713–7716 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Lee, S. J., Hwang, A. B. & Kenyon, C. Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Curr. Biol. 20, 2131–2136 (2010). Identification of a signalling mechanism involving ROS in lifespan extension following mild respiration inhibition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Inoue, H. et al. The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes Dev. 19, 2278–2283 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zarse, K. et al. Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial l-proline catabolism to induce a transient ROS signal. Cell Metab. 15, 451–465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schmeisser, S. et al. Mitochondrial hormesis links low-dose arsenite exposure to lifespan extension. Aging Cell 12, 508–517 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Monaghan, R. M. et al. A nuclear role for the respiratory enzyme CLK-1 in regulating mitochondrial stress responses and longevity. Nat. Cell Biol. 17, 782–792 (2015). Identification of a novel communication mechanism involving the nuclear translocation of an isoform of CLK-1, which regulates stress resistance and lifespan.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Owusu-Ansah, E., Yavari, A., Mandal, S. & Banerjee, U. Distinct mitochondrial retrograde signals control the G1–S cell cycle checkpoint. Nat. Genet. 40, 356–361 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Owusu-Ansah, E., Song, W. & Perrimon, N. Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155, 699–712 (2013). A description of non-cell-autonomous-mediated lifespan extension through ROS, the UPRmt and insulin signalling following mitochondrial perturbation in D. melanogaster muscles.

    Article  CAS  PubMed  Google Scholar 

  65. Lu, W. et al. ZNF143 transcription factor mediates cell survival through upregulation of the GPX1 activity in the mitochondrial respiratory dysfunction. Cell Death Dis. 3, e422 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, X. L. & Kunsch, C. Induction of cytoprotective genes through Nrf2/antioxidant response element pathway: a new therapeutic approach for the treatment of inflammatory diseases. Curr. Pharm. Des. 10, 879–891 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Kops, G. J. et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419, 316–321 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Tan, W. Q., Wang, K., Lv, D. Y. & Li, P. F. Foxo3a inhibits cardiomyocyte hypertrophy through transactivating catalase. J. Biol. Chem. 283, 29730–29739 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nguyen, T., Nioi, P. & Pickett, C. B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem. 284, 13291–13295 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chae, S. et al. A systems approach for decoding mitochondrial retrograde signaling pathways. Sci. Signal. 6, rs4 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Acin-Perez, R. et al. ROS-triggered phosphorylation of complex II by Fgr kinase regulates cellular adaptation to fuel use. Cell Metab. 19, 1020–1033 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shi, S. Y. et al. DJ-1 links muscle ROS production with metabolic reprogramming and systemic energy homeostasis in mice. Nat. Commun. 6, 7415 (2015).

    Article  PubMed  Google Scholar 

  73. Quiros, P. M., Langer, T. & Lopez-Otin, C. New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol. 16, 345–359 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Jovaisaite, V., Mouchiroud, L. & Auwerx, J. The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J. Exp. Biol. 217, 137–143 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Houtkooper, R. H. et al. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497, 451–457 (2013). Establishment of the concept of mitonuclear imbalance to explain the identification of Mrps5 as a mouse longevity gene and the pro-longevity effect of mitochondrial translation inhibition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Durieux, J., Wolff, S. & Dillin, A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144, 79–91 (2011). The first description of non-cell-autonomous-mediated longevity following mitochondrial stress.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mouchiroud, L. et al. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430–441 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pirinen, E. et al. Pharmacological inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell Metab. 19, 1034–1041 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gariani, K. et al. Eliciting the mitochondrial unfolded protein response via NAD repletion reverses fatty liver disease. Hepatology http://dx.doi.org/10.1002/hep.28245, (2015). References 21, 22, 28–29 and 77–79 describe mechanisms of mitochondrial regulation involving NAD+ and SIRT1.

  80. Haynes, C. M., Yang, Y., Blais, S. P., Neubert, T. A. & Ron, D. The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans. Mol. Cell 37, 529–540 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nargund, A. M., Pellegrino, M. W., Fiorese, C. J., Baker, B. M. & Haynes, C. M. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337, 587–590 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Benedetti, C., Haynes, C. M., Yang, Y., Harding, H. P. & Ron, D. Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics 174, 229–239 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Haynes, C. M., Petrova, K., Benedetti, C., Yang, Y. & Ron, D. ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev. Cell 13, 467–480 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Nargund, A. M., Fiorese, C. J., Pellegrino, M. W., Deng, P. & Haynes, C. M. Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPRmt. Mol. Cell 58, 123–133 (2015). References 80–84 unravel the molecular mechanisms of UPRmt regulation in worms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pimenta de Castro, I. et al. Genetic analysis of mitochondrial protein misfolding in Drosophila melanogaster. Cell Death Differ. 19, 1308–1316 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Horibe, T. & Hoogenraad, N. J. The chop gene contains an element for the positive regulation of the mitochondrial unfolded protein response. PLoS ONE 2, e835 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhao, Q. et al. A mitochondrial specific stress response in mammalian cells. EMBO J. 21, 4411–4419 (2002). The first description of the UPRmt.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Aldridge, J. E., Horibe, T. & Hoogenraad, N. J. Discovery of genes activated by the mitochondrial unfolded protein response (mtUPR) and cognate promoter elements. PLoS ONE 2, e874 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kohler, F., Muller-Rischart, A. K., Conradt, B. & Rolland, S. G. The loss of LRPPRC function induces the mitochondrial unfolded protein response. Aging 7, 701–717 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Papa, L. & Germain, D. SirT3 regulates the mitochondrial unfolded protein response. Mol. Cell. Biol. 34, 699–710 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Al-Furoukh, N. et al. ClpX stimulates the mitochondrial unfolded protein response (UPRmt) in mammalian cells. Biochim. Biophys. Acta 1853, 2580–2591 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Siegelin, M. D. et al. Exploiting the mitochondrial unfolded protein response for cancer therapy in mice and human cells. J. Clin. Invest. 121, 1349–1360 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Jin, S. M. & Youle, R. J. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy 9, 1750–1757 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dogan, S. A. et al. Tissue-specific loss of DARS2 activates stress responses independently of respiratory chain deficiency in the heart. Cell Metab. 19, 458–469 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Song, M., Mihara, K., Chen, Y., Scorrano, L. & Dorn, G. W. 2nd. Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab. 21, 273–285 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Khan, N. A. et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3 . EMBO Mol. Med. 6, 721–731 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ryu, D. et al. A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function. Cell Metab. 20, 856–869 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Mohrin, M. et al. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347, 1374–1377 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu, Y. et al. Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population. Cell 158, 1415–1430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Papa, L. & Germain, D. Estrogen receptor mediates a distinct mitochondrial unfolded protein response. J. Cell Sci. 124, 1396–1402 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bahat, A. et al. Transcriptional activation of LON gene by a new form of mitochondrial stress: a role for the nuclear respiratory factor 2 in StAR overload response (SOR). Mol. Cell Endocrinol. 408, 62–72 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Bahat, A. et al. StAR enhances transcription of genes encoding the mitochondrial proteases involved in its own degradation. Mol. Endocrinol. 28, 208–224 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Akerfelt, M., Morimoto, R. I. & Sistonen, L. Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 11, 545–555 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tan, K. et al. Mitochondrial SSBP1 protects cells from proteotoxic stresses by potentiating stress-induced HSF1 transcriptional activity. Nat. Commun. 6, 6580 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Harding, H. P. et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6, 1099–1108 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Harding, H. P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619–633 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Donnelly, N., Gorman, A. M., Gupta, S. & Samali, A. The eIF2α kinases: their structures and functions. Cell. Mol. Life Sci. 70, 3493–3511 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Palam, L. R., Baird, T. D. & Wek, R. C. Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. J. Biol. Chem. 286, 10939–10949 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Novoa, I., Zeng, H., Harding, H. P. & Ron, D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. J. Cell Biol. 153, 1011–1022 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ohoka, N., Yoshii, S., Hattori, T., Onozaki, K. & Hayashi, H. TRB3, a novel ER stress-inducible gene, is induced via ATF4–CHOP pathway and is involved in cell death. EMBO J. 24, 1243–1255 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Baker, B. M., Nargund, A. M., Sun, T. & Haynes, C. M. Protective coupling of mitochondrial function and protein synthesis via the eIF2α kinase GCN-2. PLoS Genet. 8, e1002760 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rainbolt, T. K., Atanassova, N., Genereux, J. C. & Wiseman, R. L. Stress-regulated translational attenuation adapts mitochondrial protein import through Tim17A degradation. Cell Metab. 18, 908–919 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Michel, S., Canonne, M., Arnould, T. & Renard, P. Inhibition of mitochondrial genome expression triggers the activation of CHOP-10 by a cell signaling dependent on the integrated stress response but not the mitochondrial unfolded protein response. Mitochondrion 21, 58–68 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Moullan, N. et al. Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research. Cell Rep. 10, 1681–1691 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bruning, A., Brem, G. J., Vogel, M. & Mylonas, I. Tetracyclines cause cell stress-dependent ATF4 activation and mTOR inhibition. Exp. Cell Res. 320, 281–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Moisoi, N. et al. Mitochondrial dysfunction triggered by loss of HtrA2 results in the activation of a brain-specific transcriptional stress response. Cell Death Differ. 16, 449–464 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Evstafieva, A. G. et al. A sustained deficiency of mitochondrial respiratory complex III induces an apoptotic cell death through the p53-mediated inhibition of pro-survival activities of the activating transcription factor 4. Cell Death Dis. 5, e1511 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Martinez-Reyes, I., Sanchez-Arago, M. & Cuezva, J. M. AMPK and GCN2–ATF4 signal the repression of mitochondria in colon cancer cells. Biochem. J. 444, 249–259 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Silva, J. M., Wong, A., Carelli, V. & Cortopassi, G. A. Inhibition of mitochondrial function induces an integrated stress response in oligodendroglia. Neurobiol. Dis. 34, 357–365 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Viader, A. et al. Aberrant Schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy. Neuron 77, 886–898 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang, X. & Chen, X. J. A cytosolic network suppressing mitochondria-mediated proteostatic stress and cell death. Nature 524, 481–484 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wrobel, L. et al. Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol. Nature 524, 485–488 (2015). References 121 and 122 identify a cytosolic stress response activated by mitochondrial stress.

    Article  CAS  PubMed  Google Scholar 

  123. Copeland, J. M. et al. Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain. Curr. Biol. 19, 1591–1598 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Lee, C. et al. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab. 21, 443–454 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lee, C., Yen, K. & Cohen, P. Humanin: a harbinger of mitochondrial-derived peptides? Trends Endocrinol. Metab. 24, 222–228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hashimoto, Y. et al. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Aβ. Proc. Natl Acad. Sci. USA 98, 6336–6341 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chau, M. D., Gao, J., Yang, Q., Wu, Z. & Gromada, J. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK–SIRT1–PGC-1α pathway. Proc. Natl Acad. Sci. USA 107, 12553–12558 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Tyynismaa, H. et al. Mitochondrial myopathy induces a starvation-like response. Hum. Mol. Genet. 19, 3948–3958 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Suomalainen, A. et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol. 10, 806–818 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kim, K. H. et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 19, 83–92 (2013). References 124 and 128–130 report examples of non-cell-autonomous signalling of mitochondrial stress in mammals.

    Article  CAS  PubMed  Google Scholar 

  131. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nunnari, J. & Suomalainen, A. Mitochondria: in sickness and in health. Cell 148, 1145–1159 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Feng, J., Bussiere, F. & Hekimi, S. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev. Cell 1, 633–644 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Wong, A., Boutis, P. & Hekimi, S. Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics 139, 1247–1259 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Yang, W. & Hekimi, S. A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol. 8, e1000556 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kirchman, P. A., Kim, S., Lai, C. Y. & Jazwinski, S. M. Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics 152, 179–190 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Kaeberlein, M. et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310, 1193–1196 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Hwang, A. B. et al. Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 111, E4458–E4467 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Baruah, A. et al. CEP-1, the Caenorhabditis elegans p53 homolog, mediates opposing longevity outcomes in mitochondrial electron transport chain mutants. PLoS Genet. 10, e1004097 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Walter, L., Baruah, A., Chang, H. W., Pace, H. M. & Lee, S. S. The homeobox protein CEH-23 mediates prolonged longevity in response to impaired mitochondrial electron transport chain in C. elegans. PLoS Biol. 9, e1001084 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Palikaras, K., Lionaki, E. & Tavernarakis, N. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521, 525–528 (2015). A description of how mitochondrial biogenesis and mitophagy are coordinately regulated to determine lifespan in C. elegans.

    Article  CAS  PubMed  Google Scholar 

  142. Ristow, M. Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. Nat. Med. 20, 709–711 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Zhang, Y., Shao, Z., Zhai, Z., Shen, C. & Powell-Coffman, J. A. The HIF-1 hypoxia-inducible factor modulates lifespan in C. elegans. PLoS ONE 4, e6348 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Heidler, T., Hartwig, K., Daniel, H. & Wenzel, U. Caenorhabditis elegans lifespan extension caused by treatment with an orally active ROS-generator is dependent on DAF-16 and SIR-2.1. Biogerontology 11, 183–195 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Lee, H. et al. The Caenorhabditis elegans AMP-activated protein kinase AAK-2 is phosphorylated by LKB1 and is required for resistance to oxidative stress and for normal motility and foraging behavior. J. Biol. Chem. 283, 14988–14993 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Schaar, C. E. et al. Mitochondrial and cytoplasmic ROS have opposing effects on lifespan. PLoS Genet. 11, e1004972 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Liu, X. et al. Evolutionary conservation of the clk-1-dependent mechanism of longevity: loss of mclk1 increases cellular fitness and lifespan in mice. Genes Dev. 19, 2424–2434 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lapointe, J. & Hekimi, S. Early mitochondrial dysfunction in long-lived Mclk1+/− mice. J. Biol. Chem. 283, 26217–26227 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Dell'agnello, C. et al. Increased longevity and refractoriness to Ca2+-dependent neurodegeneration in Surf1 knockout mice. Hum. Mol. Genet. 16, 431–444 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Zordan, M. A. et al. Post-transcriptional silencing and functional characterization of the Drosophila melanogaster homolog of human Surf1. Genetics 172, 229–241 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Pulliam, D. A. et al. Complex IV-deficient Surf1−/− mice initiate mitochondrial stress responses. Biochem. J. 462, 359–371 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Caldeira da Silva, C. C., Cerqueira, F. M., Barbosa, L. F., Medeiros, M. H. & Kowaltowski, A. J. Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity. Aging Cell 7, 552–560 (2008). References 147–152 give some examples of mitochondrial stress affecting health and lifespan in mammals.

    Article  CAS  PubMed  Google Scholar 

  153. Kim, H. J., Morrow, G., Westwood, J. T., Michaud, S. & Tanguay, R. M. Gene expression profiling implicates OXPHOS complexes in lifespan extension of flies over-expressing a small mitochondrial chaperone, Hsp22. Exp. Gerontol. 45, 611–620 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Andreux, P. A., Houtkooper, R. H. & Auwerx, J. Pharmacological approaches to restore mitochondrial function. Nat. Rev. Drug Discov. 12, 465–483 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Williams, E. G. & Auwerx, J. The convergence of systems and reductionist approaches in complex trait analysis. Cell 162, 23–32 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Yun, J. & Finkel, T. Mitohormesis. Cell Metab. 19, 757–766 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Dietrich, A., Wallet, C., Iqbal, R. K., Gualberto, J. M. & Lotfi, F. Organellar non-coding RNAs: emerging regulation mechanisms. Biochimie 117, 48–62 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Sugiura, A., McLelland, G. L., Fon, E. A. & McBride, H. M. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J. 33, 2142–2156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Arnoult, D., Soares, F., Tattoli, I. & Girardin, S. E. Mitochondria in innate immunity. EMBO Rep. 12, 901–910 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Liu, Y., Samuel, B. S., Breen, P. C. & Ruvkun, G. Caenorhabditis elegans pathways that surveil and defend mitochondria. Nature 508, 406–410 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Pellegrino, M. W. et al. Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection. Nature 516, 414–417 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. West, A. P. et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476–480 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang, D., Malo, D. & Hekimi, S. Elevated mitochondrial reactive oxygen species generation affects the immune response via hypoxia-inducible factor-1α in long-lived Mclk1+/− mouse mutants. J. Immunol. 184, 582–590 (2010).

    Article  CAS  PubMed  Google Scholar 

  165. Wang, D. et al. An enhanced immune response of Mclk1+/− mutant mice is associated with partial protection from fibrosis, cancer and the development of biomarkers of aging. PLoS ONE 7, e49606 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Manzanillo, P. S. et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501, 512–516 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Baixauli, F. et al. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses. Cell Metab. 22, 485–498 (2015). References 160–167 report several examples of crosstalk between mitochondrial stress signalling and immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Williams, D. S., Cash, A., Hamadani, L. & Diemer, T. Oxaloacetate supplementation increases lifespan in Caenorhabditis elegans through an AMPK/FOXO-dependent pathway. Aging Cell 8, 765–768 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Dillin, A. et al. Rates of behavior and aging specified by mitochondrial function during development. Science 298, 2398–2401 (2002). A description of the longevity phenotypes of C. elegans ETC mutants.

    Article  CAS  PubMed  Google Scholar 

  170. Yang, W. & Hekimi, S. Two modes of mitochondrial dysfunction lead independently to lifespan extension in Caenorhabditis elegans. Aging Cell 9, 433–447 (2010).

    Article  CAS  PubMed  Google Scholar 

  171. Liu, J. et al. Drosophila sbo regulates lifespan through its function in the synthesis of coenzyme Q in vivo. J. Genet. Genom. 38, 225–234 (2011).

    Article  CAS  Google Scholar 

  172. Lemire, B. D., Behrendt, M., DeCorby, A. & Gaskova, D. C. elegans longevity pathways converge to decrease mitochondrial membrane potential. Mech. Ageing Dev. 130, 461–465 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all members of the Auwerx laboratory for their helpful comments on the manuscript and apologize for the omission of relevant work owing to space constraints. P.M.Q. is supported by a long-term fellowship from the European Molecular Biology Organization (EMBO; ALTF 480–2014). J.A. is the Nestlé Chair in Energy Metabolism, and the Auwerx laboratory is supported by grants from the École Polytechnique Fédérale de Lausanne, the Swiss National Science Foundation (31003A-140780), the AgingX programme of the Swiss Initiative for Systems Biology (51RTP0-151019), the Krebsforschung Schweiz/Swiss Cancer League (KFS-3082-02-2013) and the US National Institutes of Health (NIH; R01AG043930).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Auwerx.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Endosymbionts

Organisms that live within another organism in a symbiotic relationship.

Electron transport chain

(ETC). A group of protein complexes that pass electrons from one to another via redox reactions coupled with the transfer of protons across the inner mitochondrial membrane, creating a proton gradient that drives ATP synthesis.

Intermediate metabolism

The intermediate steps by which nutrient molecules or foodstuffs are metabolized intracellularly.

Calcium buffering

A mechanism that regulates calcium ion (Ca2+) concentrations within the cytoplasm.

Oxidative phosphorylation

(OXPHOS). A biochemical pathway within mitochondria that generates ATP through the oxidation of nutrients.

Nuclear receptors

Ligand-dependent transcription factors that are characterized by a central DNA-binding domain and a carboxy-terminal ligand-binding domain.

Metabolic reprogramming

The set of changes in cellular metabolism that allow quiescent cells to proliferate; it is considered to be a hallmark of cancer.

Reactive oxygen species

(ROS). Reactive molecules generated in cells by the reduction of oxygen with a single electron (superoxide), two electrons (hydrogen peroxide) or three electrons (hydroxyl radical).

Anaplerotic reactions

Reactions that replenish intermediates of metabolic pathways.

Glyoxylate cycle

An anabolic pathway, and a variation of the tricarboxylic acid cycle, that converts two acetyl-CoA molecules to dicarboxylic acid (succinate); this cycle is not present in mammals.

Mitophagy

A selective form of autophagy that is responsible for the elimination of defective mitochondria.

Ionophores

Molecules that bind to ions and allow their passage across a membrane or a lipophilic phase.

Mitochondrial membrane potential

An electrochemical potential formed by chemiosmosis that results from the proton gradient generated across the inner mitochondrial membrane by the mitochondrial respiratory chain.

Mitochondria fuel switching

Adaptations in mitochondrial function and electron transport chain organization as a result of changes in the availability of the fuel source.

Mitochondrial uncoupling

The dissociation of mitochondrial respiration from ATP generation, characterized by increased permeability of the inner mitochondrial membrane to protons and subsequent dissipation of mitochondrial membrane potential.

Mitonuclear imbalance

Mitonuclear imbalance occurs when oxidative phosphorylation subunits encoded by both mitochondrial and nuclear DNA fail to assemble together in precise stoichiometric ratios to ensure proper mitochondrial function, owing to an increase or decrease of subunits from one of the origins.

Mitohormesis

A process in which low levels of mitochondrial stress cause a protective cellular response that reduces susceptibility to disease and potentially promotes longevity.

Mitofusins

High-molecular-mass GTPases that are essential for mitochondrial fusion.

Mouse BXD genetic reference population

A family of recombinant inbred mouse strains, which is currently the largest and best-characterized mouse genetic reference population, composed of 160 lines.

Mitokines

Signals released from a cell or tissue in response to mitochondrial stress to modulate cellular or organismal homeostasis and longevity.

Ketogenesis

A metabolic pathway in the liver that generates ketones using acetyl-CoA, which provides an important fuel source for the brain and other tissues during long-term fasting.

Rho0 cells

Eukaryotic cells that lack mitochondrial DNA.

Formyl peptides

Small peptides in mitochondria and bacteria with a formylated amino-terminal Met and, usually, a hydrophobic amino acid at the carboxy-terminal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quirós, P., Mottis, A. & Auwerx, J. Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol 17, 213–226 (2016). https://doi.org/10.1038/nrm.2016.23

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2016.23

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing