Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Telomeres in cancer: tumour suppression and genome instability

An Author Correction to this article was published on 28 February 2019

Key Points

  • Telomeres sustain the proliferative capacity of cells and maintain genome integrity by ensuring that chromosome ends are not mistaken for sites of DNA damage. Chromosome end protection is achieved by the telomeric shelterin complex, which suppresses DNA damage signalling and repair pathways.

  • In telomerase-negative cells, telomeres shorten during cell proliferation owing to incomplete DNA replication and exonucleolytic processing. This attrition compromises telomere function leading to signalling by the kinases ATM and ATR, cell cycle arrest and senescence or apoptosis.

  • Telomere attrition represents a major barrier to tumorigenesis, operating as a tumour suppressor pathway.

  • Loss of the RB and p53 pathways disables the ability of cells to arrest following ATR and ATM signalling at telomeres that were compromised by attrition.

  • RB-deficient and p53-deficient cells continue to experience telomere shortening, which leads to telomere crisis.

  • Telomere crisis can cause a wide array of genomic aberrations, including chromosome deletions and amplifications, translocations, chromothripsis, kataegis and tetraploidization.

  • Telomere crisis has been documented in many cancers, including chronic lymphocytic leukaemia, breast cancer and colorectal adenomas.

  • Activation of telomerase provides an escape from crisis and allows outgrowth of cells with a rearranged genome.

Abstract

The shortening of human telomeres has two opposing effects during cancer development. On the one hand, telomere shortening can exert a tumour-suppressive effect through the proliferation arrest induced by activating the kinases ATM and ATR at unprotected chromosome ends. On the other hand, loss of telomere protection can lead to telomere crisis, which is a state of extensive genome instability that can promote cancer progression. Recent data, reviewed here, provide new evidence for the telomere tumour suppressor pathway and has revealed that telomere crisis can induce numerous cancer-relevant changes, including chromothripsis, kataegis and tetraploidization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Composition and structure of the human telomere system.
Figure 2: Telomere shortening as a barrier to tumorigenesis.
Figure 3: Telomere crisis.
Figure 4: BFB cycles and chromosomal rearrangements during telomere crisis.
Figure 5: Chromothripsis and kataegis in telomere crisis.
Figure 6: Tetraploidization during telomere crisis.

Similar content being viewed by others

References

  1. Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000). Demonstrates that telomere attrition in p53-mutant mice promotes epithelial cancers through the formation of chromosome rearrangements.

    Article  CAS  PubMed  Google Scholar 

  2. Artandi, S. E. & DePinho, R. A. Telomeres and telomerase in cancer. Carcinogenesis 31, 9–18 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Maciejowski, J., Li, Y., Bosco, N., Campbell, P. J. & de Lange, T. Chromothripsis and kataegis induced by telomere crisis. Cell 163, 1641–1654 (2015). Shows that dicentric chromosomes formed during telomere crisis persist through mitosis, are fragmented by TREX1 in G1 phase and give rise to chromothripsis and kataegis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Yates, L. R. & Campbell, P. J. Evolution of the cancer genome. Nat. Rev. Genet. 13, 795–806 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Willis, N. A., Rass, E. & Scully, R. Deciphering the code of the cancer genome: mechanisms of chromosome rearrangement. Trends Cancer 1, 217–230 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. O'Hagan, R. C. et al. Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer Cell 2, 149–155 (2002). Demonstrates that tumours with telomere dysfunction have higher levels of genome instability, with frequent amplifications and deletions.

    Article  CAS  PubMed  Google Scholar 

  8. Davoli, T., Denchi, E. L. & de Lange, T. Persistent telomere damage induces bypass of mitosis and tetraploidy. Cell 141, 81–93 (2010). Finds that persistent telomere dysfunction and consequent DNA damage signalling lead to bypass of mitosis and tetraploidization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davoli, T. & de Lange, T. Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes transformation of mouse cells. Cancer Cell 21, 765–776 (2012). Reports that telomere-driven tetraploidy occurs in human cells during telomere crisis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Lange, T. Telomere-related genome instability in cancer. Cold Spring Harb. Symp. Quant. Biol. 70, 197–204 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Blackburn, E. H. & Collins, K. Telomerase: an RNP enzyme synthesizes DNA. Cold Spring Harb. Perspect. Biol. 3, a003558 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lingner, J. et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561–567 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Hamma, T. & Ferré-D'Amaré, A. R. The box H/ACA ribonucleoprotein complex: interplay of RNA and protein structures in post-transcriptional RNA modification. J. Biol. Chem. 285, 805–809 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Nakamura, T. M. et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955–959 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Meyerson, M. et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90, 785–795 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Feng, J. et al. The RNA component of human telomerase. Science 269, 1236–1241 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Egan, E. D. & Collins, K. Biogenesis of telomerase ribonucleoproteins. RNA 18, 1747–1759 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Darzacq, X. et al. Stepwise RNP assembly at the site of H/ACA RNA transcription in human cells. J. Cell Biol. 173, 207–218 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kiss, T., Fayet-Lebaron, E. & Jády, B. E. Box H/ACA small ribonucleoproteins. Mol. Cell 37, 597–606 (2010).

    Article  PubMed  Google Scholar 

  20. Schmidt, J. C. & Cech, T. R. Human telomerase: biogenesis, trafficking, recruitment, and activation. Genes Dev. 29, 1095–1105 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hockemeyer, D. & Collins, K. Control of telomerase action at human telomeres. Nat. Struct. Mol. Biol. 22, 848–852 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shay, J. W. Role of telomeres and telomerase in aging and cancer. Cancer Discov. 6, 584–593 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998). Establishes a causal relationship between telomere shortening and cellular senescence.

    Article  CAS  PubMed  Google Scholar 

  24. Cristofari, G. & Lingner, J. Telomere length homeostasis requires that telomerase levels are limiting. EMBO J. 25, 565–574 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chiba, K. et al. Cancer-associated TERT promoter mutations abrogate telomerase silencing. eLife 4, e07918 (2015).

    Article  PubMed Central  Google Scholar 

  26. Ramirez, R. D. et al. Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev. 15, 398–403 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vaziri, H. & Benchimol, S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol. 8, 279–282 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Gomes, N. M. V. et al. Comparative biology of mammalian telomeres: hypotheses on ancestral states and the roles of telomeres in longevity determination. Aging Cell 10, 761–768 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990). Demonstrates that the telomeres of human fibroblasts shorten during growth in culture.

    Article  CAS  PubMed  Google Scholar 

  30. Huffman, K. E., Levene, S. D., Tesmer, V. M., Shay, J. W. & Wright, W. E. Telomere shortening is proportional to the size of the G-rich telomeric 3′-overhang. J. Biol. Chem. 275, 19719–19722 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Miyake, Y. et al. RPA-like mammalian Ctc1–Stn1–Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. Mol. Cell 36, 193–206 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Surovtseva, Y. V. et al. Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. Mol. Cell 36, 207–218 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang, C., Dai, X. & Chai, W. Human Stn1 protects telomere integrity by promoting efficient lagging-strand synthesis at telomeres and mediating C-strand fill-in. Cell Res. 22, 1681–1695 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dai, X. et al. Molecular steps of G-overhang generation at human telomeres and its function in chromosome end protection. EMBO J. 29, 2788–2801 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu, P., Takai, H. & de Lange, T. Telomeric 3′ overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST. Cell 150, 39–52 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, F. et al. Human CST has independent functions during telomere duplex replication and C-strand fill-in. Cell Rep. 2, 1096–1103 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu, P., van Overbeek, M., Rooney, S. & de Lange, T. Apollo contributes to G overhang maintenance and protects leading-end telomeres. Mol. Cell 39, 606–617 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kasbek, C., Wang, F. & Price, C. M. Human TEN1 maintains telomere integrity and functions in genome-wide replication restart. J. Biol. Chem. 288, 30139–30150 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. d'Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003). Finds that telomeres in senescent cells exhibit the hallmarks of DNA DSBs.

    Article  CAS  PubMed  Google Scholar 

  40. Zou, Y., Sfeir, A., Gryaznov, S. M., Shay, J. W. & Wright, W. E. Does a sentinel or a subset of short telomeres determine replicative senescence? Mol. Biol. Cell 15, 3709–3718 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hemann, M. T., Strong, M. A., Hao, L. Y. & Greider, C. W. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107, 67–77 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Takai, H., Smogorzewska, A. & de Lange, T. DNA damage foci at dysfunctional telomeres. Curr. Biol. 13, 1549–1556 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Jacobs, J. J. L. & de Lange, T. Significant role for p16INK4a in p53-independent telomere-directed senescence. Curr. Biol. 14, 2302–2308 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Karlseder, J., Smogorzewska, A. & de Lange, T. Senescence induced by altered telomere state, not telomere loss. Science 295, 2446–2449 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Shay, J. W., Pereira-Smith, O. M. & Wright, W. E. A role for both RB and p53 in the regulation of human cellular senescence. Exp. Cell Res. 196, 33–39 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Hara, E., Tsurui, H., Shinozaki, A., Nakada, S. & Oda, K. Cooperative effect of antisense-Rb and antisense-p53 oligomers on the extension of life span in human diploid fibroblasts, TIG-1. Biochem. Biophys. Res. Commun. 179, 528–534 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. Shay, J. W., Wright, W. E., Brasiskyte, D. & Van der Haegen, B. A. E6 of human papillomavirus type 16 can overcome the M1 stage of immortalization in human mammary epithelial cells but not in human fibroblasts. Oncogene 8, 1407–1413 (1993).

    CAS  PubMed  Google Scholar 

  48. Brown, J. P., Wei, W. & Sedivy, J. M. Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277, 831–834 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527–538 (1999). Shows that p53 is activated during telomere crisis to induce growth arrest and suppress transformation.

    Article  CAS  PubMed  Google Scholar 

  50. Smogorzewska, A. & de Lange, T. Different telomere damage signaling pathways in human and mouse cells. EMBO J. 21, 4338–4348 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Greenberg, R. A. et al. Short dysfunctional telomeres impair tumorigenesis in the INK4aΔ2/3 cancer-prone mouse. Cell 97, 515–525 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Rudolph, K. L., Millard, M., Bosenberg, M. W. & DePinho, R. A. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat. Genet. 28, 155–159 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Qi, L. et al. Short telomeres and ataxia-telangiectasia mutated deficiency cooperatively increase telomere dysfunction and suppress tumorigenesis. Cancer Res. 63, 8188–8196 (2003).

    CAS  PubMed  Google Scholar 

  54. Qi, L., Strong, M. A., Karim, B. O., Huso, D. L. & Greider, C. W. Telomere fusion to chromosome breaks reduces oncogenic translocations and tumour formation. Nat. Cell Biol. 7, 706–711 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Feldser, D. M. & Greider, C. W. Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell 11, 461–469 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Huang, F. W. et al. Highly recurrent TERT promoter mutations in human melanoma. Science 339, 957–959 (2013). Uses whole-genome sequencing in melanomas to identify activating mutations in the TERT promoter.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Horn, S. et al. TERT promoter mutations in familial and sporadic melanoma. Science 339, 959–961 (2013). Identifies activating mutations in the TERT promoter through an analysis of melanoma-prone families.

    Article  CAS  PubMed  Google Scholar 

  59. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Peifer, M. et al. Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature 526, 700–704 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Valentijn, L. J. et al. TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors. Nat. Genet. 47, 1411–1414 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Robles-Espinoza, C. D. et al. POT1 loss-of-function variants predispose to familial melanoma. Nat. Genet. 46, 478–481 (2014). Links germline, loss-of-function variants of POT1 to melanoma susceptibility and increased telomere length.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shi, J. et al. Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma. Nat. Genet. 46, 482–486 (2014). Reports the identification of unrelated, melanoma-prone families that carry variants of POT1 and show increased telomere lengths.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pinzaru, A. M. et al. Telomere replication stress induced by POT1 inactivation accelerates tumorigenesis. Cell Rep. 15, 2170–2184 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Machiela, M. J. et al. Genetic variants associated with longer telomere length are associated with increased lung cancer risk among never-smoking women in Asia: a report from the female lung cancer consortium in Asia. Int. J. Cancer 137, 311–319 (2015). Assesses telomere length using telomere length-associated single-nucleotide polymorphisms and finds that longer telomere length is associated with increased risk of non-Hodgkin lymphoma.

    Article  CAS  PubMed  Google Scholar 

  66. Machiela, M. J. et al. Genetically predicted longer telomere length is associated with increased risk of B-cell lymphoma subtypes. Hum. Mol. Genet. 25, 1663–1676 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ojha, J. et al. Genetic variation associated with longer telomere length increases risk of chronic lymphocytic leukemia. Cancer Epidemiol. Biomarkers Prev. 25, 1043–1049 (2016). Shows that an inherited predisposition for longer telomeres is associated with an increased risk of CLL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mangino, M. et al. Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans. Hum. Mol. Genet. 21, 5385–5394 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Walsh, K. M. et al. Variants near TERT and TERC influencing telomere length are associated with high-grade glioma risk. Nat. Genet. 46, 731–735 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rode, L., Nordestgaard, B. G. & Bojesen, S. E. Long telomeres and cancer risk among 95 568 individuals from the general population. Int. J. Epidemiol. 45, 1634–1643 (2016).

    Article  PubMed  Google Scholar 

  71. Hayashi, M. T., Cesare, A. J., Fitzpatrick, J. A. J., Lazzerini Denchi, E. & Karlseder, J. A telomere-dependent DNA damage checkpoint induced by prolonged mitotic arrest. Nat. Struct. Mol. Biol. 19, 387–394 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hayashi, M. T., Cesare, A. J., Rivera, T. & Karlseder, J. Cell death during crisis is mediated by mitotic telomere deprotection. Nature 522, 492–496 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Boboila, C., Alt, F. W. & Schwer, B. Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks. Adv. Immunol. 116, 1–49 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Smogorzewska, A., Karlseder, J., Holtgreve-Grez, H., Jauch, A. & de Lange, T. DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. Curr. Biol. 12, 1635–1644 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Capper, R. et al. The nature of telomere fusion and a definition of the critical telomere length in human cells. Genes Dev. 21, 2495–2508 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Oh, S. et al. DNA ligase III and DNA ligase IV carry out genetically distinct forms of end joining in human somatic cells. DNA Repair 21, 97–110 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lin, T. T. et al. Telomere dysfunction and fusion during the progression of chronic lymphocytic leukemia: evidence for a telomere crisis. Blood 116, 1899–1907 (2010). Shows that telomere shortening and fusions in CLL increase with advanced disease and correlate with large-scale genome rearrangements.

    Article  CAS  PubMed  Google Scholar 

  78. Jones, R. E. et al. Escape from telomere-driven crisis is DNA ligase III dependent. Cell Rep. 8, 1063–1076 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Maser, R. S. et al. DNA-dependent protein kinase catalytic subunit is not required for dysfunctional telomere fusion and checkpoint response in the telomerase-deficient mouse. Mol. Cell. Biol. 27, 2253–2265 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Roger, L. et al. Extensive telomere erosion in the initiation of colorectal adenomas and its association with chromosomal instability. J. Natl Cancer Inst. 105, 1202–1211 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Celli, G. B. & de Lange, T. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat. Cell Biol. 7, 712–718 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Celli, G. B., Denchi, E. L. & de Lange, T. Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat. Cell Biol. 8, 885–890 (2006).

    Article  PubMed  CAS  Google Scholar 

  83. Riboni, R. et al. Telomeric fusions in cultured human fibroblasts as a source of genomic instability. Cancer Genet. Cytogenet. 95, 130–136 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. McClintock, B. The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc. Natl Acad. Sci. USA 25, 405–416 (1939).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gisselsson, D. et al. Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. Proc. Natl Acad. Sci. USA 97, 5357–5362 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Murnane, J. P. Telomeres and chromosome instability. DNA Repair 5, 1082–1092 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Llorente, B., Smith, C. E. & Symington, L. S. Break-induced replication: what is it and what is it for? Cell Cycle 7, 859–864 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Anand, R. P., Lovett, S. T. & Haber, J. E. Break-induced DNA replication. Cold Spring Harb. Perspect. Biol. 5, a010397 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Shih, I. M. et al. Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis. Cancer Res. 61, 818–822 (2001).

    CAS  PubMed  Google Scholar 

  90. Liddiard, K. et al. Sister chromatid telomere fusions, but not NHEJ-mediated inter-chromosomal telomere fusions, occur independently of DNA ligases 3 and 4. Genome Res. 26, 588–600 (2016). Uses single molecule analysis to demonstrate that a single dysfunctional telomere can fuse with diverse non-telomeric loci.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li, Y. et al. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature 508, 102 (2014). Uses whole-genome sequencing to show that, in leukaemia, dicentric chromosomes formed by telomere fusion or a Robertsonian translocation may precipitate chromothripsis.

    Google Scholar 

  92. Lo, A. W. I. et al. DNA amplification by breakage/fusion/bridge cycles initiated by spontaneous telomere loss in a human cancer cell line. Neoplasia 4, 531–538 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ma, C., Martin, S., Trask, B. & Hamlin, J. L. Sister chromatid fusion initiates amplification of the dihydrofolate reductase gene in Chinese hamster cells. Genes Dev. 7, 605–620 (1993).

    Article  CAS  PubMed  Google Scholar 

  94. Smith, K. A., Gorman, P. A., Stark, M. B., Groves, R. P. & Stark, G. R. Distinctive chromosomal structures are formed very early in the amplification of CAD genes in Syrian hamster cells. Cell 63, 1219–1227 (1990).

    Article  CAS  PubMed  Google Scholar 

  95. Bignell, G. R. et al. Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution. Genome Res. 17, 1296–1303 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Campbell, P. J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1113 (2010).

    Article  CAS  Google Scholar 

  97. Waddell, N. et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518, 495–501 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nones, K. et al. Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nat. Commun. 5, 5224 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011). Reports the discovery of chromothripsis using next-generation sequencing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rausch, T. et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148, 59–71 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jones, M. J. K. & Jallepalli, P. V. Chromothripsis: chromosomes in crisis. Dev. Cell 23, 917 (2012).

    Article  CAS  Google Scholar 

  102. Garsed, D. W. et al. The architecture and evolution of cancer neochromosomes. Cancer Cell 26, 653–667 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Lopez, V. et al. Cytokinesis breaks dicentric chromosomes preferentially at pericentromeric regions and telomere fusions. Genes Dev. 29, 322–336 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pampalona, J. et al. Chromosome bridges maintain kinetochore–microtubule attachment throughout mitosis and rarely break during anaphase. PLoS ONE 11, e0147420 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Vargas, J. D., Hatch, E. M., Anderson, D. J. & Hetzer, M. W. Transient nuclear envelope rupturing during interphase in human cancer cells. Nucleus 3, 88–100 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hatch, E. M., Fischer, A. H., Deerinck, T. J. & Hetzer, M. W. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154, 47–60 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Raab, M. et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 7611–7362 (2016).

    Article  CAS  Google Scholar 

  109. Denais, C. M. et al. Nuclear envelope rupture and repair during cancer cell migration. Science 352, 1–8 (2016).

    Article  CAS  Google Scholar 

  110. Lindahl, T., Gally, J. A. & Edelman, G. M. Properties of deoxyribonuclease 3 from mammalian tissues. J. Biol. Chem. 244, 5014–5019 (1969).

    CAS  PubMed  Google Scholar 

  111. Höss, M. et al. A human DNA editing enzyme homologous to the Escherichia coli DnaQ/MutD protein. EMBO J. 18, 3868–3875 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Mazur, D. J. & Perrino, F. W. Structure and expression of the TREX1 and TREX2 3′−5′ exonuclease genes. J. Biol. Chem. 276, 14718–14727 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Rice, G. I., Rodero, M. P. & Crow, Y. J. Human disease phenotypes associated with mutations in TREX1. J. Clin. Immunol. 35, 235–243 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Gisselsson, D. et al. Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors. Proc. Natl Acad. Sci. USA 98, 12683–12688 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang, C.-Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Santaguida, S., Tighe, A., D'Alise, A. M., Taylor, S. S. & Musacchio, A. Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine. J. Cell Biol. 190, 73–87 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mardin, B. R. et al. A cell-based model system links chromothripsis with hyperploidy. Mol. Syst. Biol. 11, 828–828 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Roberts, S. A. et al. Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol. Cell 46, 424–435 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 45, 970–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chan, K. et al. An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers. Nat. Genet. 47, 1067–1072 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Harris, R. S., Petersen-Mahrt, S. K. & Neuberger, M. S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol. Cell 10, 1247–1253 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Harris, R. S. & Dudley, J. P. APOBECs and virus restriction. Virology 480, 131–145 (2015).

    Article  CAS  Google Scholar 

  125. Davoli, T. & de Lange, T. The causes and consequences of polyploidy in normal development and cancer. Annu. Rev. Cell Dev. Biol. 27, 585–610 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Shackney, S. E. et al. Model for the genetic evolution of human solid tumors. Cancer Res. 49, 3344–3354 (1989).

    CAS  PubMed  Google Scholar 

  127. Galipeau, P. C. et al. 17p (p53) allelic losses, 4N (G2/tetraploid) populations, and progression to aneuploidy in Barrett's esophagus. Proc. Natl Acad. Sci. USA 93, 7081–7084 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Olaharski, A. J. et al. Tetraploidy and chromosomal instability are early events during cervical carcinogenesis. Carcinogenesis 27, 337–343 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134–1140 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nguyen, H. G. et al. Deregulated Aurora-B induced tetraploidy promotes tumorigenesis. FASEB J. 23, 2741–2748 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Duelli, D. M. et al. A virus causes cancer by inducing massive chromosomal instability through cell fusion. Curr. Biol. 17, 431–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Ganem, N. J., Storchová, Z. & Pellman, D. Tetraploidy, aneuploidy and cancer. Curr. Opin. Genet. Dev. 17, 157–162 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Fujiwara, T. et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437, 1043–1047 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Dewhurst, S. M. et al. Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. Cancer Discov. 4, 175–185 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. de Lange, T. et al. Structure and variability of human chromosome ends. Mol. Cell. Biol. 10, 518–527 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hastie, N. D. et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346, 866–868 (1990).

    Article  CAS  PubMed  Google Scholar 

  137. Furugori, E. et al. Telomere shortening in gastric carcinoma with aging despite telomerase activation. J. Cancer Res. Clin. Oncol. 126, 481–485 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Mehle, C., Ljungberg, B. & Roos, G. Telomere shortening in renal cell carcinoma. Cancer Res. 54, 236–241 (1994).

    CAS  PubMed  Google Scholar 

  139. Takagi, S. et al. Telomere shortening and the clinicopathologic characteristics of human colorectal carcinomas. Cancer 86, 1431–1436 (1999).

    Article  CAS  PubMed  Google Scholar 

  140. Sommerfeld, H. J. et al. Telomerase activity: a prevalent marker of malignant human prostate tissue. Cancer Res. 56, 218–222 (1996).

    CAS  PubMed  Google Scholar 

  141. Meeker, A. K. et al. Telomere shortening is an early somatic DNA alteration in human prostate tumorigenesis. Cancer Res. 62, 6405–6409 (2002).

    CAS  PubMed  Google Scholar 

  142. Meeker, A. K. et al. Telomere length abnormalities occur early in the initiation of epithelial carcinogenesis. Clin. Cancer Res. 10, 3317–3326 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Clarke, D. J., Johnson, R. T. & Downes, C. S. Topoisomerase II inhibition prevents anaphase chromatid segregation in mammalian cells independently of the generation of DNA strand breaks. J. Cell Sci. 105, 563–569 (1993).

    CAS  PubMed  Google Scholar 

  144. Hauf, S., Waizenegger, I. C. & Peters, J. M. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science 293, 1320–1323 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Chin, K. et al. In situ analyses of genome instability in breast cancer. Nat. Genet. 36, 984–988 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. O'Connell, P. et al. Analysis of loss of heterozygosity in 399 premalignant breast lesions at 15 genetic loci. J. Natl Cancer Inst. 90, 697–703 (1998).

    Article  CAS  PubMed  Google Scholar 

  147. Meeker, A. K. et al. Telomere shortening occurs in subsets of normal breast epithelium as well as in situ and invasive carcinoma. Am. J. Pathol. 164, 925–935 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Herbert, B. S., Wright, W. E. & Shay, J. W. Telomerase and breast cancer. Breast Cancer Res. 3, 146–149 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Baird, D. M., Rowson, J., Wynford-Thomas, D. & Kipling, D. Extensive allelic variation and ultrashort telomeres in senescent human cells. Nat. Genet. 33, 203–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Tanaka, H. et al. Telomere fusions in early human breast carcinoma. Proc. Natl Acad. Sci. USA 109, 14098–14103 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lin, T. T. et al. Telomere dysfunction accurately predicts clinical outcome in chronic lymphocytic leukaemia, even in patients with early stage disease. Br. J. Haematol. 167, 223 (2014).

    Google Scholar 

  152. Simpson, K. et al. Telomere fusion threshold identifies a poor prognostic subset of breast cancer patients. Mol. Oncol. 9, 1186–1193 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Heidenreich, B., Rachakonda, P. S., Hemminki, K. & Kumar, R. TERT promoter mutations in cancer development. Curr. Opin. Genet. Dev. 24, 30–37 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Killela, P. J. et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc. Natl Acad. Sci. USA 110, 6026 (2013).

    Article  CAS  Google Scholar 

  155. Kinde, I. et al. TERT promoter mutations occur early in urothelial neoplasia and are biomarkers of early disease and disease recurrence in urine. Cancer Res. 73, 7162–7167 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Remke, M. et al. TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathol. 126, 917–929 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Quaas, A. et al. Frequency of TERT promoter mutations in primary tumors of the liver. Virchows Arch. 465, 673–677 (2014).

    Article  CAS  PubMed  Google Scholar 

  158. Weinhold, N., Jacobsen, A., Schultz, N., Sander, C. & Lee, W. Genome-wide analysis of noncoding regulatory mutations in cancer. Nat. Genet. 46, 1160–1165 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Borah, S. et al. TERT promoter mutations and telomerase reactivation in urothelial cancer. Science 347, 1006–1010 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bell, R. J. A. et al. The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science 348, 1036–1039 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Pickett, H. A. & Reddel, R. R. Molecular mechanisms of activity and derepression of alternative lengthening of telomeres. Nat. Struct. Mol. Biol. 22, 875–880 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Lovejoy, C. A. et al. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet. 8, e1002772 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Heaphy, C. M. et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science 333, 425 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Heaphy, C. M. et al. Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am. J. Pathol. 179, 1608–1615 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ceccarelli, M. et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164, 550–563 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Eckel-Passow, J. E. et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N. Engl. J. Med. 372, 2499–2508 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ding, Z. et al. Telomerase reactivation following telomere dysfunction yields murine prostate tumors with bone metastases. Cell 148, 896–907 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Sprung, C. N., Sabatier, L. & Murnane, J. P. Telomere dynamics in a human cancer cell line. Exp. Cell Res. 247, 29–37 (1999).

    Article  CAS  PubMed  Google Scholar 

  170. Fouladi, B., Sabatier, L., Miller, D., Pottier, G. & Murnane, J. P. The relationship between spontaneous telomere loss and chromosome instability in a human tumor cell line. Neoplasia 2, 540–554 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Murnane, J. P., Sabatier, L., Marder, B. A. & Morgan, W. F. Telomere dynamics in an immortal human cell line. EMBO J. 13, 4953–4962 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Sabatier, L., Ricoul, M., Pottier, G. & Murnane, J. P. The loss of a single telomere can result in instability of multiple chromosomes in a human tumor cell line. Mol. Cancer Res. 3, 139–150 (2005).

    Article  CAS  PubMed  Google Scholar 

  173. Gascoigne, K. E. & Cheeseman, I. M. Induced dicentric chromosome formation promotes genomic rearrangements and tumorigenesis. Chromosome Res. 21, 407–418 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Baca, S. C. et al. Punctuated evolution of prostate cancer genomes. Cell 153, 666–677 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Palm, W. & de Lange, T. How shelterin protects mammalian telomeres. Annu. Rev. Genet. 42, 301–334 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Schmutz, I. & de Lange, T. Shelterin. Curr. Biol. 26, R397–R399 (2016).

    Article  PubMed  Google Scholar 

  177. Lazzerini Denchi, E. & Sfeir, A. Stop pulling my strings — what telomeres taught us about the DNA damage response. Nat. Rev. Mol. Cell Biol. 17, 364–378 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Xin, H. et al. TPP1 is a homologue of ciliate TEBP-β and interacts with POT1 to recruit telomerase. Nature 445, 559–562 (2007).

    Article  CAS  PubMed  Google Scholar 

  179. Nandakumar, J. et al. The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature 492, 285–289 (2013).

    Article  CAS  Google Scholar 

  180. Nandakumar, J. & Cech, T. R. Finding the end: recruitment of telomerase to telomeres. Nat. Rev. Mol. Cell Biol. 14, 69–82 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Sexton, A. N. et al. Genetic and molecular identification of three human TPP1 functions in telomerase action: recruitment, activation, and homeostasis set point regulation. Genes Dev. 28, 1885–1899 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Abreu, E. et al. TIN2-tethered TPP1 recruits human telomerase to telomeres in vivo. Mol. Cell. Biol. 30, 2971–2982 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Frank, A. K. et al. The shelterin TIN2 subunit mediates recruitment of telomerase to telomeres. PLoS Genet. 11, e1005410 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Greider, C. W. Regulating telomere length from the inside out: the replication fork model. Genes Dev. 30, 1483–1491 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Smogorzewska, A. & de Lange, T. Regulation of telomerase by telomeric proteins. Annu. Rev. Biochem. 73, 177–208 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Yu and the de Lange laboratory for discussions and help with this manuscript. The authors' work is supported by grants from the US National Institutes of Health (CA181090, AG016642 and K99CA212290), the STARR Cancer Consortium and the Breast Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Titia de Lange.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

ATM

A PI3K-related protein kinase that initiates the response to double-strand breaks, with crucial roles in cell cycle regulation and DNA repair.

ATR

A PI3K-related protein kinase that responds to the formation of single-stranded DNA, with a crucial role in the response to replication stress and double-strand breaks.

Non-homologous end joining

A major double-strand break repair pathway that does not rely on sequence homology and can result in small insertions and deletions at the site of repair.

Hayflick limit

The finite proliferation potential of primary human cells.

Dicentric chromosomes

Abnormal chromosomes with two centromeres that can result from telomere–telomere fusion.

Break-induced replication

An origin of replication-independent replication restart that is initiated by the invasion of resected DNA into homologous sequences.

Micronuclei

Abnormal, small nuclei containing one or more chromosome (fragments); often formed as a result of mitotic chromosome segregation defects.

Lamin

An intermediate filament protein that imparts structural rigidity to the nucleus by assembling into a meshwork at the inner nuclear membrane.

Hyper-triploid karyotype

A genome that contains more than three (3N) but less than four (4N) sets of chromosomes.

Anaphase bridges

DNA bridges that connect chromatin masses undergoing separation during anaphase and can be observed with conventional DNA staining techniques.

Usual ductal hyperplasia

A benign overgrowth of cells that line the ducts or milk glands and is associated with an elevated risk of breast cancer.

Ductal carcinoma in situ

A noninvasive, early form of breast cancer characterized by proliferative, malignant cells that are confined to the milk duct.

Alternative lengthening of telomeres

A telomere lengthening mechanism that relies on homologous recombination-mediated DNA copying to counteract telomere shortening.

Chromoplexy

A class of complex DNA rearrangements frequently observed in prostate cancer, which is characterized by multiple chromatin rearrangements that arise in a highly interdependent manner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maciejowski, J., de Lange, T. Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol 18, 175–186 (2017). https://doi.org/10.1038/nrm.2016.171

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2016.171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing