Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolution of transcription factor binding in metazoans — mechanisms and functional implications

Key Points

  • Transcription factors orchestrate tissue-specific gene expression and thus tissue identity. Metazoan gene regulation is highly complex, and comparative analyses of transcription factor binding across species have revealed mechanisms underlying both genome evolution and gene regulation.

  • Early studies focused on individual loci and showed both conservation and divergence of putative transcription factor binding sites across metazoan species.

  • Direct global mapping of transcription factor binding locations in multiple mammalian and fruitfly species revealed that tissue-specific transcription factor binding evolves rapidly in mammals, whereas developmental transcription factor binding in fruitflies seems to be under substantially greater constraint.

  • Comparative studies in mammals and fruitflies have also highlighted common properties of metazoan transcription factor binding evolution, such as dependence on genetic sequence changes, combinatorial co-evolution of binding and partially compensatory turnover.

  • Observed differences in transcription factor binding evolution and densities of conserved non-coding elements among different metazoan families might be the result of different pressures from extreme differences in effective population sizes.

  • In mammals, cross-species chromatin immunoprecipitation followed by sequencing studies have further revealed how transposable element-derived sequences help to generate novel lineage-specific transcription factor binding.

Abstract

Differences in transcription factor binding can contribute to organismal evolution by altering downstream gene expression programmes. Genome-wide studies in Drosophila melanogaster and mammals have revealed common quantitative and combinatorial properties of in vivo DNA binding, as well as marked differences in the rate and mechanisms of evolution of transcription factor binding in metazoans. Here, we review the recently discovered rapid 're-wiring' of in vivo transcription factor binding between related metazoan species and summarize general principles underlying the observed patterns of evolution. We then consider what might explain the differences in genome evolution between metazoan phyla and outline the conceptual and technological challenges facing this research field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Insects and mammals have markedly different densities of conserved elements.
Figure 2: Genome-wide transcription factor binding profiling in Drosophila spp. and mammals.
Figure 3: Sources of metazoan transcription factor binding divergence.

Similar content being viewed by others

References

  1. Arendt, D. The evolution of cell types in animals: emerging principles from molecular studies. Nature Rev. Genet. 9, 868–882 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Shubin, N., Tabin, C. & Carroll, S. Deep homology and the origins of evolutionary novelty. Nature 457, 818–823 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Chan, E. T. et al. Conservation of core gene expression in vertebrate tissues. J. Biol. 8, 33 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brawand, D. et al. The evolution of gene expression levels in mammalian organs. Nature 478, 343–348 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Vaquerizas, J. M., Kummerfeld, S. K., Teichmann, S. A. & Luscombe, N. M. A census of human transcription factors: function, expression and evolution. Nature Rev. Genet. 10, 252–263 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Britten, R. J. & Davidson, E. H. Gene regulation for higher cells: a theory. Science 165, 349–357 (1969).

    Article  CAS  PubMed  Google Scholar 

  7. Britten, R. J. & Davidson, E. H. Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Q. Rev. Biol. 46, 111–138 (1971).

    Article  CAS  PubMed  Google Scholar 

  8. King, M. C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975).

    Article  CAS  PubMed  Google Scholar 

  9. Romero, I. G., Ruvinsky, I. & Gilad, Y. Comparative studies of gene expression and the evolution of gene regulation. Nature Rev. Genet. 13, 505–516 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Weintraub, H. The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell 75, 1241–1244 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Engelkamp, D. & van Heyningen, V. Transcription factors in disease. Curr. Opin. Genet. Dev. 6, 334–342 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Wray, G. A. The evolutionary significance of cis-regulatory mutations. Nature Rev. Genet. 8, 206–216 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Ryffel, G. U. Mutations in the human genes encoding the transcription factors of the hepatocyte nuclear factor (HNF)1 and HNF4 families: functional and pathological consequences. J. Mol. Endocrinol. 27, 11–29 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Haeussler, M. & Joly, J. S. When needles look like hay: how to find tissue-specific enhancers in model organism genomes. Dev. Biol. 350, 239–254 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Romano, L. A. & Wray, G. A. Conservation of Endo16 expression in sea urchins despite evolutionary divergence in both cis and trans-acting components of transcriptional regulation. Development 130, 4187–4199 (2003). Focusing on a well-characterized promoter in sea urchins, this study shows a largely conserved transcription pattern despite extensive divergence in the promoter sequences of the two species analysed.

    Article  CAS  PubMed  Google Scholar 

  16. Balhoff, J. P. & Wray, G. A. Evolutionary analysis of the well characterized endo16 promoter reveals substantial variation within functional sites. Proc. Natl Acad. Sci. USA 102, 8591–8596 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ludwig, M. Z., Bergman, C., Patel, N. H. & Kreitman, M. Evidence for stabilizing selection in a eukaryotic enhancer element. Nature 403, 564–567 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Hare, E. E., Peterson, B. K., Iyer, V. N., Meier, R. & Eisen, M. B. Sepsid even-skipped enhancers are functionally conserved in Drosophila despite lack of sequence conservation. PLoS Genet. 4, e1000106 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ludwig, M. Z. et al. Functional evolution of a cis-regulatory module. PLoS Biol. 3, e93 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fisher, S., Grice, E. A., Vinton, R. M., Bessling, S. L. & McCallion, A. S. Conservation of RET regulatory function from human to zebrafish without sequence similarity. Science 312, 276–279 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. McGaughey, D. M. et al. Metrics of sequence constraint overlook regulatory sequences in an exhaustive analysis at phox2b. Genome Res. 18, 252–260 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim, J., He, X. & Sinha, S. Evolution of regulatory sequences in 12 Drosophila species. PLoS Genet. 5, e1000330 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. He, B. Z., Holloway, A. K., Maerkl, S. J. & Kreitman, M. Does positive selection drive transcription factor binding site turnover? A test with Drosophila cis-regulatory modules. PLoS Genet. 7, e1002053 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dermitzakis, E. T. & Clark, A. G. Evolution of transcription factor binding sites in Mammalian gene regulatory regions: conservation and turnover. Mol. Biol. Evol. 19, 1114–1121 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476–482 (2011). This study sequenced and aligned the genomes of 29 carefully selected mammals, implementing earlier theoretical models to infer, at high resolution and confidence, the constraint of sequence elements in the human genome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Genome 10K Community of Scientists. Genome 10K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. J. Hered. 100, 659–674 (2009).

  27. Wasserman, W. W., Palumbo, M., Thompson, W., Fickett, J. W. & Lawrence, C. E. Human–mouse genome comparisons to locate regulatory sites. Nature Genet. 26, 225–228 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Pollard, K. S. et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443, 167–172 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Pennacchio, L. A. et al. In vivo enhancer analysis of human conserved non-coding sequences. Nature 444, 499–502 (2006). By exploiting human–pufferfish and human–mouse–rat sequence conservation, this study experimentally evaluates the regulatory potential of conserved non-coding sequences in a transgenic mouse enhancer assay.

    Article  CAS  PubMed  Google Scholar 

  30. Woolfe, A. et al. Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol. 3, e7 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Prabhakar, S. et al. Close sequence comparisons are sufficient to identify human cis-regulatory elements. Genome Res. 16, 855–863 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R. & Siepel, A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 20, 110–121 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ponting, C. P. & Hardison, R. C. What fraction of the human genome is functional? Genome Res. 21, 1769–1776 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ward, L. D. & Kellis, M. Evidence of abundant purifying selection in humans for recently acquired regulatory functions. Science 337, 1675–1678 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alfoldi, J. & Lindblad-Toh, K. Comparative genomics as a tool to understand evolution and disease. Genome Res. 23, 1063–1068 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005). This paper presents a uniform method for estimating evolutionary conserved elements across groups of related metazoan species; it highlights varying degrees of genome compaction and constraint in metazoans that range from mammals to yeast.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Andolfatto, P. Adaptive evolution of non-coding DNA in Drosophila. Nature 437, 1149–1152 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Clark, A. G. et al. Evolution of genes and genomes on the Drosophila phylogeny. Nature 450, 203–218 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Li, X. Y. et al. The role of chromatin accessibility in directing the widespread, overlapping patterns of Drosophila transcription factor binding. Genome Biol. 12, R34 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boyle, A. P. et al. High-resolution mapping and characterization of open chromatin across the genome. Cell 132, 311–322 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cao, Y. et al. Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming. Dev. Cell 18, 662–674 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Carr, A. & Biggin, M. D. A comparison of in vivo and in vitro DNA-binding specificities suggests a new model for homeoprotein DNA binding in Drosophila embryos. EMBO J. 18, 1598–1608 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. MacArthur, S. et al. Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions. Genome Biol. 10, R80 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Biggin, M. D. Animal transcription networks as highly connected, quantitative continua. Dev. Cell 21, 611–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Fisher, W. W. et al. DNA regions bound at low occupancy by transcription factors do not drive patterned reporter gene expression in Drosophila. Proc. Natl Acad. Sci. USA 109, 21330–21335 (2012). This paper convincingly argues that Drosophila spp. genomic regions that are bound at low occupancy by a set of developmental transcription factors show low functional activity and might not be involved in cis -regulation of transcription.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dowell, R. D. Transcription factor binding variation in the evolution of gene regulation. Trends Genet. 26, 468–475 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Odom, D. T. et al. Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nature Genet. 39, 730–732 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Bradley, R. K. et al. Binding site turnover produces pervasive quantitative changes in transcription factor binding between closely related Drosophila species. PLoS Biol. 8, e1000343 (2010). This study documents the high conservation of transcription factor binding locations for five developmental transcription factors in two Drosophila species, as well as the striking co-evolution of their binding intensities.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. He, Q. et al. High conservation of transcription factor binding and evidence for combinatorial regulation across six Drosophila species. Nature Genet. 43, 414–420 (2011). This paper shows a very high conservation of Twist binding across five fruitfly species, with evolutionary distances estimated to be as divergent as those between humans and chickens.

    Article  CAS  PubMed  Google Scholar 

  50. Paris, M. et al. Extensive divergence of transcription factor binding in Drosophila embryos with highly conserved gene expression. PLoS Genet. 9, e1003748 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kunarso, G. et al. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nature Genet. 42, 631–634 (2010). This study combines comparative ChIP–seq analysis of transcription factor binding in human and mouse ESCs with gene expression and perturbation studies to show the rapid evolution of transcription factor binding locations and their potentially compensatory turnover.

    Article  CAS  PubMed  Google Scholar 

  52. Schmidt, D. et al. Five-vertebrate ChIP–seq reveals the evolutionary dynamics of transcription factor binding. Science 328, 1036–1040 (2010). This study compares transcription factor binding across divergent vertebrates and reveals extensive turnover of regulatory elements and few deeply shared transcription factor binding sites in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stefflova, K. et al. Cooperativity and rapid evolution of cobound transcription factors in closely related mammals. Cell 154, 530–540 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schmidt, D. et al. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148, 335–348 (2012). This paper extensively analyses mechanisms of CTCF binding evolution in mammals and shows the large contribution of transposable elements to changes in CTCF binding.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ni, X. et al. Adaptive evolution and the birth of CTCF binding sites in the Drosophila genome. PLoS Biol. 10, e1001420 (2012). This study analyses CTCF binding evolution in fruitfly species and showes rapid evolution of its binding locations compared with cross-species studies of the same protein in mammals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Phillips, J. E. & Corces, V. G. CTCF: master weaver of the genome. Cell 137, 1194–1211 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hou, C., Li, L., Qin, Z. S. & Corces, V. G. Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Mol. Cell 48, 471–484 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schwartz, Y. B. et al. Nature and function of insulator protein binding sites in the Drosophila genome. Genome Res. 22, 2188–2198 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hadjur, S. et al. Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature 460, 410–413 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bowers, S. R. et al. A conserved insulator that recruits CTCF and cohesin exists between the closely related but divergently regulated interleukin-3 and granulocyte-macrophage colony-stimulating factor genes. Mol. Cell. Biol. 29, 1682–1693 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Merkenschlager, M. & Odom, D. T. CTCF and cohesin: linking gene regulatory elements with their targets. Cell 152, 1285–1297 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Schmidt, D. et al. A CTCF-independent role for cohesin in tissue-specific transcription. Genome Res. 20, 578–588 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Faure, A. J. et al. Cohesin regulates tissue-specific expression by stabilizing highly occupied cis-regulatory modules. Genome Res. 22, 2163–2175 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim, T. H. et al. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128, 1231–1245 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shen, Y. et al. A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116–120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, H. et al. Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Res. 22, 1680–1688 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Martin, D. et al. Genome-wide CTCF distribution in vertebrates defines equivalent sites that aid the identification of disease-associated genes. Nature Struct. Mol. Biol. 18, 708–714 (2011).

    Article  CAS  Google Scholar 

  69. Heintzman, N. D. et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schwalie, P. C. et al. Co-binding by YY1 identifies the transcriptionally active, highly conserved set of CTCF-bound regions in primate genomes. Genome Biol. 14, R148 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bourque, G. et al. Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res. 18, 1752–1762 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ward, M. C. et al. Latent regulatory potential of human-specific repetitive elements. Mol. Cell 49, 262–272 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jacques, P. E., Jeyakani, J. & Bourque, G. The majority of primate-specific regulatory sequences are derived from transposable elements. PLoS Genet. 9, e1003504 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zheng, W., Zhao, H., Mancera, E., Steinmetz, L. M. & Snyder, M. Genetic analysis of variation in transcription factor binding in yeast. Nature 464, 1187–1191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Reddy, T. E. et al. Effects of sequence variation on differential allelic transcription factor occupancy and gene expression. Genome Res. 22, 860–869 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kasowski, M. et al. Variation in transcription factor binding among humans. Science 328, 232–235 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wilson, M. D. et al. Species-specific transcription in mice carrying human chromosome 21. Science 322, 434–438 (2008). Using a mouse model carrying human chromosome 21, this study shows that regulatory sequences are, to a large extent, sufficient to direct transcriptional programmes, even when the cellular environment changes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zheng, W., Gianoulis, T. A., Karczewski, K. J., Zhao, H. & Snyder, M. Regulatory variation within and between species. Annu. Rev. Genom. Hum. Genet. 12, 327–346 (2011).

    Article  CAS  Google Scholar 

  79. Degner, J. F. et al. DNase I sensitivity QTLs are a major determinant of human expression variation. Nature 482, 390–394 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shibata, Y. et al. Extensive evolutionary changes in regulatory element activity during human origins are associated with altered gene expression and positive selection. PLoS Genet. 8, e1002789 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Stone, J. R. & Wray, G. A. Rapid evolution of cis-regulatory sequences via local point mutations. Mol. Biol. Evol. 18, 1764–1770 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Heinz, S. et al. Effect of natural genetic variation on enhancer selection and function. Nature 503, 487–492 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Stewart, A. J. & Plotkin, J. B. Why transcription factor binding sites are ten nucleotides long. Genetics 192, 973–985 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Johnson, R. et al. Evolution of the vertebrate gene regulatory network controlled by the transcriptional repressor REST. Mol. Biol. Evol. 26, 1491–1507 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Feschotte, C. Transposable elements and the evolution of regulatory networks. Nature Rev. Genet. 9, 397–405 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. de Koning, A. P., Gu, W., Castoe, T. A., Batzer, M. A. & Pollock, D. D. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 7, e1002384 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang, T. et al. Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc. Natl Acad. Sci. USA 104, 18613–18618 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Bolotin, E. et al. Nuclear receptor HNF4α binding sequences are widespread in Alu repeats. BMC Genomics 12, 560 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Johnson, R. et al. Identification of the REST regulon reveals extensive transposable element-mediated binding site duplication. Nucleic Acids Res. 34, 3862–3877 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lowe, C. B., Bejerano, G. & Haussler, D. Thousands of human mobile element fragments undergo strong purifying selection near developmental genes. Proc. Natl Acad. Sci. USA 104, 8005–8010 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Eddy, S. R. The C-value paradox, junk DNA and ENCODE. Curr. Biol. 22, R898–R899 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Lynch, M., Bobay, L. M., Catania, F., Gout, J. F. & Rho, M. The repatterning of eukaryotic genomes by random genetic drift. Annu. Rev. Genom. Hum. Genet. 12, 347–366 (2011).

    Article  CAS  Google Scholar 

  93. Gonzalez, J. & Petrov, D. A. Evolution of genome content: population dynamics of transposable elements in flies and humans. Methods Mol. Biol. 855, 361–383 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Bartolome, C., Maside, X. & Charlesworth, B. On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. Mol. Biol. Evol. 19, 926–937 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Eickbush, T. H. & Furano, A. V. Fruit flies and humans respond differently to retrotransposons. Curr. Opin. Genet. Dev. 12, 669–674 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Kimura, M. Evolutionary rate at the molecular level. Nature 217, 624–626 (1968).

    Article  CAS  PubMed  Google Scholar 

  97. Maia, A. T. et al. Effects of BRCA2 cis-regulation in normal breast and cancer risk amongst BRCA2 mutation carriers. Breast Cancer Res. 14, R63 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang, X., Cowper-Sal lari, R., Bailey, S. D., Moore, J. H. & Lupien, M. Integrative functional genomics identifies an enhancer looping to the SOX9 gene disrupted by the 17q24.3 prostate cancer risk locus. Genome Res. 22, 1437–1446 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Schodel, J. et al. Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression. Nature Genet. 44, 420–425, S1-2 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Bernstein, B. E. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  101. Garber, M. et al. A high-throughput chromatin immunoprecipitation approach reveals principles of dynamic gene regulation in mammals. Mol. Cell 47, 810–822 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Dickel, D. E., Visel, A. & Pennacchio, L. A. Functional anatomy of distant-acting mammalian enhancers. Phil. Trans. R. Soc. B 368, 20120359 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nature Rev. Genet. 11, 636–646 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Joung, J. K. & Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nature Rev. Mol. Cell Biol. 14, 49–55 (2013).

    CAS  Google Scholar 

  105. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chevrier, N. et al. Systematic discovery of TLR signaling components delineates viral-sensing circuits. Cell 147, 853–867 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Sharon, E. et al. Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nature Biotech. 30, 521–530 (2012).

    Article  CAS  Google Scholar 

  109. Raveh-Sadka, T. et al. Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene expression in yeast. Nature Genet. 44, 743–750 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Spitz, F. & Furlong, E. E. Transcription factors: from enhancer binding to developmental control. Nature Rev. Genet. 13, 613–626 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Ravasi, T. et al. An atlas of combinatorial transcriptional regulation in mouse and man. Cell 140, 744–752 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Voss, T. C. et al. Dynamic exchange at regulatory elements during chromatin remodeling underlies assisted loading mechanism. Cell 146, 544–554 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhu, J. et al. Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152, 642–654 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bernstein, B. E. et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Cain, C. E., Blekhman, R., Marioni, J. C. & Gilad, Y. Gene expression differences among primates are associated with changes in a histone epigenetic modification. Genetics 187, 1225–1234 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mikkelsen, T. S. et al. Comparative epigenomic analysis of murine and human adipogenesis. Cell 143, 156–169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Xiao, S. et al. Comparative epigenomic annotation of regulatory DNA. Cell 149, 1381–1392 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cotney, J. et al. The evolution of lineage-specific regulatory activities in the human embryonic limb. Cell 154, 185–196 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Charlesworth, B. Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nature Rev. Genet. 10, 195–205 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Lynch, M. The origins of eukaryotic gene structure. Mol. Biol. Evol. 23, 450–468 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Shapiro, J. A. et al. Adaptive genic evolution in the Drosophila genomes. Proc. Natl Acad. Sci. USA 104, 2271–2276 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Yu, N., Jensen-Seaman, M. I., Chemnick, L., Ryder, O. & Li, W. H. Nucleotide diversity in gorillas. Genetics 166, 1375–1383 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lusk, R. W. & Eisen, M. B. Evolutionary mirages: selection on binding site composition creates the illusion of conserved grammars in Drosophila enhancers. PLoS Genet. 6, e1000829 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gayral, P. et al. Reference-free population genomics from next-generation transcriptome data and the vertebrate-invertebrate gap. PLoS Genet. 9, e1003457 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Loh, Y. H. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genet. 38, 431–440 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Conboy, C. M. et al. Cell cycle genes are the evolutionarily conserved targets of the E2F4 transcription factor. PLoS ONE 2, e1061 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Woo, Y. H. & Li, W. H. Evolutionary conservation of histone modifications in mammals. Mol. Biol. Evol. 29, 1757–1767 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kutter, C. et al. Pol III binding in six mammals shows conservation among amino acid isotypes despite divergence among tRNA genes. Nature Genet. 43, 948–955 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. C. Marioni (European Bioinformatics Institute, Cambridge, UK), Anders Eriksson (Evolutionary Ecology Group, Department of Zoology, University of Cambridge, UK), members of D.T.O and P.F.'s laboratories, particularly C. Kutter, K. Stefflova and E. Wong, and three anonymous reviewers for their comments on the manuscript. D.V. thanks Cancer Research UK for funding. This work has been funded by the European Research Council, EMBO Young Investigators Programme and Cancer Research UK (to D.T.O.), and by the European Molecular Biology Laboratory, Wellcome Trust and the European Union (to P.F.). The authors apologize to colleagues whose work could not be covered owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul Flicek or Duncan T. Odom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Chromatin immunoprecipitation followed by sequencing

(ChIP–seq). A technique that identifies potential regulatory sequences which are bound by a protein of interest and that is based on the immunoprecipitation of covalently crosslinked chromatin complexes using antibodies against a specific DNA-binding protein.

Cis-regulatory modules

(CRMs). Discrete arrangements of transcription factor binding sites in the DNA sequence that often contain motifs for several transcription factors. These can be defined using computational predictions and investigated through experimental approaches such as chromatin immunoprecipitation followed by sequencing. The definition of CRMs is useful for pinpointing functional regulatory elements.

Neutral evolution

A pattern of evolutionary change that is consistent with random drift of mutant alleles that are neutral or nearly neutral. The neutral theory of evolution states that the dynamics of the majority of changes observed at the molecular level are governed by non-adaptive evolutionary forces rather than by Darwinian (that is, positive) natural selection.

Positive selection

(Also known as directional selection). A mode of natural selection that pushes the phenotype towards an extreme, which causes the allelic frequency to shift over time towards that phenotype. Comparative genomic approaches can often infer positive selection by detecting directional patterns of nucleotide substitutions across species.

Purifying selection

(Also known as negative selection). Natural selection against individuals that deviate from an intermediate optimum; this process tends to stabilize the phenotype. Genomic segments that have been subject to purifying selection can be inferred from nucleotide substitution patterns in aligned genomes of multiple species.

Accessible genome

Segments of DNA sequence that lie in an open chromatin environment, based on the biophysics of protein–DNA interactions that can occur in these regions. Open or accessible chromatin can be readily bound by transcription factors and other effectors of the transcriptional machinery. Accessible regions are both ubiquitous and tissue specific, and can be inferred from experimental approaches such as DNase I hypersensitivity or chromatin immunoprecipitation followed by sequencing.

Non-synonymous to synonymous polymorphisms ratios

Ratios of non-synonymous substitutions (those that alter the amino acid sequence) and synonymous substitutions (that is, silent mutations) in a collection of protein-coding DNA sequences. This measure can be used to infer the evolutionary distance between species and to measure adaptive evolution. These ratios are lower in larger populations, which reflects an increased efficiency of selection versus drift.

Transposable elements

DNA sequences of exogenous origin that can insert themselves into the genome and change their position, thereby altering genome structure and, ultimately, genome size. A large proportion of mammalian genomes is thought to be derived from transposable elements.

Genetic drift

Evolutionary change that involves random sampling of genetic variants in a finite population, which causes the composition of the offspring and parental generations to differ. This process constitutes a ubiquitous source of evolutionary stochasticity.

Fossilized repeats

Ancient repeat events that are, at least partially, visible on the basis of their consensus sequence. Exapted repeat instances (for example, regulatory elements) that are derived from transposable elements often become fossilized and have been identified among evolutionarily conserved sequences.

Exaptation

Evolutionary co-option of a functionally unrelated DNA sequence for a novel function. This process has been specifically studied for transposable elements which, in spite of their exogenous origin, are often functionally adopted by the host genome, for example, as regulatory sequences.

Non-adaptive forces of evolution

Features of the population genetic environment that operate in a stochastic manner. These include random genetic drift, recombination and mutation, and the relative power of these forces conditions the types of evolutionary changes that are possible in various contexts.

Average genomic diversity

Average synonymous nucleotide heterozygosity, which is a measure of the number of heterozygotes in a population and hence genomic diversity. It is predicted to decrease in populations with smaller effective population sizes (for example, it is higher in Drosophila spp. than in mammals).

Effective population sizes

Effective number of gametes sampled per generation. They determine the rates of change in the composition of populations that is caused by genetic drift.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villar, D., Flicek, P. & Odom, D. Evolution of transcription factor binding in metazoans — mechanisms and functional implications. Nat Rev Genet 15, 221–233 (2014). https://doi.org/10.1038/nrg3481

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3481

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research