Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A network-biology perspective of microRNA function and dysfunction in cancer

Key Points

  • MicroRNAs (miRNAs) have important functions in controlling many cell properties, including cell growth and differentiation. Their dysregulation is a frequent contributor to cancer growth and progression.

  • miRNAs post-transcriptionally regulate biological processes through their coordinated activities on pathways and networks.

  • miRNAs act cooperatively with other miRNAs and with transcription factors, which are frequent targets of miRNAs.

  • miRNAs typically act as control nodes or hubs in regulatory networks. Delineating their functional effects requires elucidation of their upstream regulators and downstream targets.

  • In silico and experimental methods for identifying direct targets of miRNAs are advancing rapidly.

  • Information from patient-derived mass-transcriptomic data sets will contribute enormously to future efforts to derive clinically relevant outcomes from complex biological networks.

Abstract

MicroRNAs (miRNAs) participate in most aspects of cellular differentiation and homeostasis, and consequently have roles in many pathologies, including cancer. These small non-coding RNAs exert their effects in the context of complex regulatory networks, often made all the more extensive by the inclusion of transcription factors as their direct targets. In recent years, the increased availability of gene expression data and the development of methodologies that profile miRNA targets en masse have fuelled our understanding of miRNA functions, and of the sources and consequences of miRNA dysregulation. Advances in experimental and computational approaches are revealing not just cancer pathways controlled by single miRNAs but also intermeshed regulatory networks controlled by multiple miRNAs, which often engage in reciprocal feedback interactions with the targets that they regulate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An example of microRNAs from a single gene that jointly regulate multiple targets in a network.
Figure 2: Individual and co-expressed microRNAs target multiple genes in common pathways to mediate effects.
Figure 3: Schematic representation of common microRNA–transcription factor auto-regulatory network motifs.

Similar content being viewed by others

References

  1. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    CAS  PubMed  Google Scholar 

  2. Lin, S. & Gregory, R. I. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer 15, 321–333 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jonas, S. & Izaurralde, E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 16, 421–433 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Kawamata, T. & Tomari, Y. Making, RISC. Trends Biochem. Sci. 35, 368–376 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Lai, E. C. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 30, 363–364 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, Y. et al. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456, 921–926 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Elkayam, E. et al. The structure of human argonaute-2 in complex with miR-20a. Cell 150, 100–110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schirle, N. T., Sheu-Gruttadauria, J. & MacRae, I. J. Structural basis for microRNA targeting. Science. 346, 608–613 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Croce, C. M. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 10, 704–714 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Adams, B. D., Kasinski, A. L. & J., S. F. Aberrant regulation and function of microRNAs in cancer. Curr. Biol. 24, R762–R776 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R. & Jacks, T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat. Genet. 39, 673–677 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Brock, A., Krause, S. & Ingber, D. E. Control of cancer formation by intrinsic genetic noise and microenvironmental cues. Nat. Rev. Cancer 15, 499–509 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Ebert, M. S. & Sharp, P. A. Roles for microRNAs in conferring robustness to biological processes. Cell 149, 515–524 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Acar, M., Mettetal, J. T. & van Oudenaarden, A. Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet. 40, 471–475 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Çag˘atay, T., Turcotte, M., Elowitz, M. B., Garcia-Ojalvo, J. & Süel, G. M. Architecture-dependent noise discriminates functionally analogous differentiation circuits. Cell 139, 512–522 (2009).

    Article  CAS  Google Scholar 

  18. Schwarzenbach, H. Circulating nucleic acids as biomarkers in breast cancer. Breast Cancer Res. 15, 211 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hayes, J., Peruzzi, P. P. & Lawler, S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol. Med. 20, 460–469 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Yang, D. et al. Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell 23, 186–199 (2013). This study identifies a small subset of crucial hub miRNAs that regulate a gene-expression network that defines a mesenchymal subtype associated with poor survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shah, M. Y. & Calin, G. A. MicroRNAs as therapeutic targets in human cancers. Wiley Interdiscip. Rev. RNA 5, 537–548 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2009).

    Article  CAS  Google Scholar 

  23. Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eichhorn, S. W. et al. mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol. Cell 56, 104–115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008). These authors show that individual miRNAs repress hundreds of proteins, but do so at typically modest levels.

    Article  CAS  PubMed  Google Scholar 

  26. Uhlmann, S. et al. Global microRNA level regulation of EGFR-driven cell-cycle protein network in breast cancer. Mol. Syst. Biol. 8, 570 (2012). This study demonstrates that multiple miRNAs simultaneously regulate an EGF-driven network, including miRNAs that have opposing effects to balance and fine-tune responses.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Du, N. H., Arpat, A. B., De Matos, M. & Gatfield, D. MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale. eLife 2014, 1–29 (2014).

    Google Scholar 

  28. Han, Y.-C. et al. An allelic series of miR-1792–mutant mice uncovers functional specialization and cooperation among members of a microRNA polycistron. Nat. Genet. 47, 766–775 (2015). An elegant demonstration of unique and cooperative roles of polycistronically encoded miRNAs, as assessed by both mouse knockout phenotype and gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gosline, S. J. C. et al. Elucidating microRNA regulatory networks using transcriptional, post-transcriptional, and histone modification measurements. Cell Rep. 14, 310–319 (2016). This paper shows that gene-expression changes mediated by miRNA-regulated transcription factors are major contributors to the cell response to miRNA manipulation.

    Article  CAS  PubMed  Google Scholar 

  30. Bracken, C. P. et al. Genome-wide identification of miR-200 targets reveals a regulatory network controlling cell invasion. EMBO J. 33, 2040–2056 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chiang, H. et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 24, 992–1009 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grün, D., Wang, Y.-L., Langenberger, D., Gunsalus, K. C. & Rajewsky, N. microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput. Biol. 1, e13 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Tsang, J. Ebert, M. & van Oudenaarden, A. Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. Mol. Cell 38, 140–153 (2010). These authors introduce 'miR-bridge', a computational method to identify miRNA target sites enriched for groups of genes of known function. They find that small numbers of hub miRNAs are disproportionately over-represented in co-targeting relationships.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ooi, C. H. et al. A densely interconnected genome- wide network of microRNAs and oncogenic pathways revealed using gene expression signatures. PLoS Genet. 7, e1002415 (2011). A study showing that co-expressed miRNAs are likely to exhibit functional redundancy in targeting similar sets of downstream genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barabási, A.-L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Shalgi, R., Lieber, D., Oren, M. & Pilpel, Y. Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput. Biol. 3, 1291–1304 (2007). These authors demonstrate that miRNAs coordinately regulate key hub genes, which are often transcriptional regulators.

    Article  CAS  Google Scholar 

  37. Cheng, C., Bhardwaj, N. & Gerstein, M. The relationship between the evolution of microRNA targets and the length of their UTRs. BMC Genomics http://dx.doi.org/10.1186/1471-2164-10-431 (2009).

  38. Li, Y. et al. Comprehensive analysis of the functional microRNA–mRNA regulatory network identifies miRNA signatures associated with glioma malignant progression. Nucleic Acids Res. 41, e203 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gaidatzis, D., van Nimwegen, E., Hausser, J. & Zavolan, M. Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 8, 69 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Maragkakis, M. et al. DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res. 37, 273–276 (2009).

    Article  CAS  Google Scholar 

  41. Shirdel, E. A., Xie, W., Mak, T. W. & Jurisica, I. NAViGaTing the micronome — using multiple microRNA prediction databases to identify signalling pathway-associated microRNAs. PLoS ONE 6, e17429 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liang, H. & Li, W. MicroRNA regulation of human protein — protein interaction network. RNA 13, 1402–1408 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hsu, C. W., Juan, H. F. & Huang, H. C. Characterization of microRNA-regulated protein-protein interaction network. Proteomics 8, 1975–1979 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Yuan, X. et al. Clustered microRNAs' coordination in regulating protein-protein interaction network. BMC Syst. Biol. 3, 65 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Sass, S. et al. MicroRNAs coordinately regulate protein complexes. BMC Syst. Biol. 5, 136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hung, J. H., Yang, T. H., Hu, Z., Weng, Z. & DeLisi, C. Gene set enrichment analysis: performance evaluation and usage guidelines. Brief. Bioinform. 13, 281–291 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ritchie, W., Flamant, S. & Rasko, J. E. J. Predicting microRNA targets and functions: traps for the unwary. Nat. Methods 6, 397–398 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007). A seminal investigation of seed and non-seed determinants of miRNA targeting efficiency.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brennecke, J., Stark, A., Russell, R. B. & Cohen, S. M. Principles of microRNA-target recognition. PLoS Biol. 3, 0404–0418 (2005).

    Article  CAS  Google Scholar 

  52. Shin, C. et al. Expanding the microRNA targeting code: functional sites with centred pairing. Mol. Cell 38, 789–802 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chi, S. W., Hannon, G. J. & Darnell, R. B. An alternative mode of microRNA target recognition. Nat. Struct. Mol. Biol. 19, 321–327 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Agarwal, V., Bell, G. W., Nam, J. W. & Bartel, D. P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 4, e05005 (2015). This study shows that non-canonical targets, identified extensively in global miRNA–target pulldown strategies, have little functional impact.

    Article  PubMed Central  Google Scholar 

  55. Lal, A. et al. Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling. PLoS Genet. 7, 19–21 (2011). A study demonstrating that miR-34a targets an extensive network of genes associated with cell cycle progression and growth factor signalling both directly and indirectly.

    Article  CAS  Google Scholar 

  56. Krishnan, K. et al. MicroRNA-182-5p targets a network of genes involved in DNA repair. RNA 19, 230–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Krishnan, K. et al. miR-139-5p is a regulator of metastatic pathways in breast cancer. RNA 19, 1767–1780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tan, S. M. et al. Sequencing of captive target transcripts identifies the network of regulated genes and functions of primate-specific miR-522. Cell Rep. 8, 1225–1239 (2014). These authors show that pulldown of miR-522 targets reveals networks of genes underlying epithelial–mesenchymal transition. Knockdown of individual genes only partially replicated the effect of miR-522, indicating the importance of network targeting by the miRNA.

    Article  CAS  PubMed  Google Scholar 

  59. Wang, X. Composition of seed sequence is a major determinant of microRNA targeting patterns. Bioinformatics 30, 1377–1383 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Helwak, A., Kudla, G., Dudnakova, T. & Tollervey, D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153, 654–665 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hafner, M. et al. Transcriptome wide identification of RNA binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–601 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Perdigão-Henriques, R. et al. miR-200 promotes the mesenchymal to epithelial transition by suppressing multiple members of the Zeb2 and Snail1 transcriptional repressor complexes. Oncogene 35, 158–172 (2016).

    Article  PubMed  CAS  Google Scholar 

  64. Lee, Y. S. & Dutta, A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. 21, 1025–1030 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mayr, C., Hemann, M. T. & Bartel, D. P. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science. 315, 1576–1579 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu, Z. et al. MiR-182 overexpression in tumourigenesis of high-grade serous ovarian carcinoma. J. Pathol. 228, 204–215 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Hirata, H. et al. Oncogenic miRNA-182-5p targets Smad4 and RECK in human bladder cancer. PLoS ONE 7, 1–8 (2012).

    Google Scholar 

  68. Sun, Y. et al. Hsa-mir-182 suppresses lung tumorigenesis through down regulation of RGS17 expression in vitro. Biochem. Biophys. Res. Commun. 396, 501–507 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Ma, Y. et al. Elevated oncofoetal miR-17-5p expression regulates colorectal cancer progression by repressing its target gene P130. Nat. Commun. 3, 1291 (2012).

    Article  PubMed  CAS  Google Scholar 

  70. Shan, S. W. et al. Mature miR-17-5p and passenger miR-17-3p induce hepatocellular carcinoma by targeting PTEN, GalNT7 and vimentin in different signal pathways. J. Cell Sci. 126, 1517–1530 (2013).

    CAS  PubMed  Google Scholar 

  71. Wei, Q., Li, Y.-X., Liu, M., Li, X. & Tang, H. MiR-17-5p targets TP53INP1 and regulates cell proliferation and apoptosis of cervical cancer cells. IUBMB Life 64, 697–704 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Korpal, M. et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat. Med. 17, 1101–1108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gibbons, D. L. et al. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev. 23, 2140–2151 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li, X. et al. MiR-200 can repress breast cancer metastasis through ZEB1-independent but moesin-dependent pathways. Oncogene 33, 4077–4088 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Arvey, A., Larsson, E., Sander, C., Leslie, C. S. & Marks, D. S. Target mRNA abundance dilutes microRNA and siRNA activity. Mol. Syst. Biol. 6, 363 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Garcia, D. M. et al. Weak seed-pairing stability and high target-site abundance decreases the proficiency of isy-6 and other miRNA's. Nat. Struct. Mol. Biol. 18, 1139–1146 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Poliseno, L., Salmeda, J., Zhang, L., Haveman, W. & Pandolfi, P. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033–1038 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang, Y. et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev. Cell 25, 69–80 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Du, Z. et al. Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer. Nat. Commun. 7, 10982 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Paci, P., Colombo, T. & Farina, L. Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer. BMC Syst. Biol. 8, 83 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Thomson, D. W. & Dinger, M. E. Endogenous microRNA sponges: evidence and controversy. Nat. Rev. Genet. 17, 272–283 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Ebert, M. S. & Sharp, P. A. Emerging roles for natural microRNA sponges. Curr. Biol. 20, R858–R861 (2014).

    Article  CAS  Google Scholar 

  85. Denzler, R., Agarwal, V., Stefano, J., Bartel, D. & Stoffel, M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell 54, 766–776 (2015).

    Article  CAS  Google Scholar 

  86. Bosson, A. D., Zamudio, J. R. & Sharp, P. A. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol. Cell 56, 347–359 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Powers, J. T. et al. Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma. Nature 535, 246–251 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Godard, P. & van Eyll, J. Pathway analysis from lists of microRNAs: common pitfalls and alternative strategy. Nucleic Acids Res. 43, 3490–3497 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bleazard, T., Lamb, J. A. & Griffiths-Jones, S. Bias in microRNA functional enrichment analysis. Bioinformatics 31, 1592–1598 (2014).

    Article  CAS  Google Scholar 

  90. Linsley, P. S. et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol. Cell. Biol. 27, 2240–2252 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Peng, Y. et al. Insulin growth factor signaling is regulated by microRNA-486, an underexpressed microRNA in lung cancer. Proc. Natl Acad. Sci. USA 110, 15043–15048 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jiang, L. et al. miR-892b silencing activates NF-κB and promotes aggressiveness in breast cancer. Cancer Res. 76, 1101–1112 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Cai, J. et al. MicroRNA-542-3p suppresses tumor cell invasion via targeting AKT pathway in human astrocytoma. J. Biol. Chem. 290, 24678–24688 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, L. K. et al. MicroRNA-133a suppresses multiple oncogenic membrane receptors and cell invasion in non-small cell lung carcinoma. PLoS ONE 9, e96765 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Pellegrino, L. et al. miR-23b regulates cytoskeletal remodeling, motility and metastasis by directly targeting multiple transcripts. Nucleic Acids Res. 41, 5400–5412 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fujiwara, N. et al. miR-634 activates the mitochondrial apoptosis pathway and enhances chemotherapy-induced cytotoxicity. Cancer Res. 75, 3890–3901 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Lin, C. W. et al. MicroRNA-135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1. Nat. Commun. 4, 1877 (2013).

    Article  PubMed  CAS  Google Scholar 

  98. Park, S. M., Gaur, A. B., Lengyel, E. & Peter, M. E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22, 894–907 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Burk, U. et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 9, 582–589 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Neilsen, C. T., Goodall, G. J. & Bracken, C. P. IsomiRs — the overlooked repertoire in the dynamic microRNAome. Trends Genet. 28, 544–549 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Cloonan, N. et al. MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol. 12, R126 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Manzano, M., Forte, E., Raja, A. N., Schipma, M. J. & Gottwein, E. Divergent target recognition by coexpressed 5′-isomiRs of miR-142-3p and selective viral mimicry. RNA 21, 1606–1620 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Telonis, A. G., Loher, P., Jing, Y., Londin, E. & Rigoutsos, I. Beyond the one-locus-one-miRNA paradigm: microRNA isoforms enable deeper insights into breast cancer heterogeneity. Nucleic Acids Res. 43, 9158–9175 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Baran-Gale, J., Fannin, E. E., Kurtz, C. L. & Sethupathy, P. Beta cell 5′-shifted isomiRs are candidate regulatory hubs in type 2 diabetes. PLoS ONE 8, e73240 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gennarino, V. A. et al. Identification of microRNA-regulated gene networks by expression analysis of target genes. Genome Res. 22, 1163–1172 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Khella, H. W. Z. et al. mir-192, mir-194 and mir-215: a convergent microRNA network suppressing tumor progression in renal cell carcinoma. Carcinogenesis 34, 2231–2239 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Senanayake, U. et al. miR-192, miR-194, miR-215, miR-200c and miR-141 are downregulated and their common target ACVR2B is strongly expressed in renal childhood neoplasms. Carcinogenesis 33, 1014–1021 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Lin, K. et al. Genome-wide screen identified let-7c/miR-99a/miR-125b regulating tumor progression and stem-like properties in cholangiocarcinoma. Oncogene 35, 3376–3386 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Bracken, C. P. et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 68, 7846–7854 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Korpal, M., Lee, E. S., Hu, G. & Kang, Y. The miR-200 family inhibits transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 283, 14910–14914 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Haga, C. L. & Phinney, D. G. MicroRNAs in the imprinted DLK1-DIO3 region repress the epithelial-to-mesenchymal transition by targeting the TWIST1 protein signaling network. J. Biol. Chem. 287, 42695–42707 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang, W. et al. Autocrine/paracrine human growth hormone-stimulated microRNA 96-182-183 cluster promotes epithelial-mesenchymal transition and invasion in breast cancer. J. Biol. Chem. 290, 13812–13829 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yu, T. et al. MicroRNA-193a-3p and -5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway. Oncogene 34, 413–423 (2014).

    Article  PubMed  CAS  Google Scholar 

  114. Ota, A. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 64, 3087–3095 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. He, L. et al. A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hayashita, Y. et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 65, 9628–9632 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Lanza, G. et al. mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol. Cancer 6, 54 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Mestdagh, P. et al. The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma. Mol. Cell 40, 762–773 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Marzi, M. J. et al. Differentiation-associated microRNAs antagonize the Rb-E2F pathway to restrict proliferation. J. Cell Biol. 199, 77–95 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Frampton, A. E. et al. MicroRNAs cooperatively inhibit a network of tumor suppressor genes to promote pancreatic tumor growth and progression. Gastroenterology 146, 268–277 (2014). This study demonstrates the synergistic activity of multiple miRNAs in cancer progression through the use of antisense miRNA inhibitors.

    Article  CAS  PubMed  Google Scholar 

  121. Sharma, S. B. et al. MicroRNAs 206 and 21 cooperate to promote RAS-extracellular signal-regulated kinase signaling by suppressing the translation of RASA1 and SPRED1. Mol. Cell. Biol. 34, 4143–4164 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Schmitz, U. et al. Cooperative gene regulation by microRNA pairs and their identification using a computational workflow. Nucleic Acids Res. 42, 7539–7552 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lewis, B. P., Shih, I.-H., Jones-Rhoades, M. W. & Bartel, D. P. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Cui, Q., Yu, Z., Purisima, E. O. & Wang, E. Principles of microRNA regulation of a human cellular signaling network. Mol. Syst. Biol. 2, 46 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Martinez, N. et al. A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux-capacity. Genes Dev. 22, 2535–2549 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Re, A., Cora, D., Taverna, D. & Caselle, M. Genome-wide survey of microRNA-transcription factor feed-forward regulatory circuits in human. Mol. Biosyst. 5, 854–867 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Friard, O., Re, A., Taverna, D., De Bortoli, M. & Corá, D. CircuitsDB: a database of mixed microRNA/transcription factor feed-forward regulatory circuits in human and mouse. BMC Bioinformatics 11, 435 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Tsang, J., Zhu, J. & van Oudenaarden, A. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol. Cell 26, 753–767 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gurtan, A. M. & Sharp, P. A. The role of miRNAs in regulating gene expression networks. J. Mol. Biol. 425, 3582–3600 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Su, W. L., Kleinhanz, R. R. & Schadt, E. E. Characterizing the role of miRNAs within gene regulatory networks using integrative genomics techniques. Mol. Syst. Biol. 7, 490 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Gerstein, M. et al. Architecture of the human regulatory network derived from ENCODE data. Nature 489, 91–100 (2012). This assessment of relationships between transcription factors and miRNAs from large-scale genomic data reveals extensive co-regulation and structures of regulatory network motifs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ben-Ami, O., Pencovich, N., Lotem, J., Levanon, D. & Groner, Y. A regulatory interplay between miR-27a and Runx1 during megakaryopoiesis. Proc. Natl Acad. Sci. USA 106, 238–243 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Lu, L. et al. A novel YY1-miR-1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY1-miRNA network. PLoS ONE 7, e27596 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Li, Q.-Q. et al. Involvement of NF-κB/miR-448 regulatory feedback loop in chemotherapy-induced epithelial-mesenchymal transition of breast cancer cells. Cell Death Differ. 18, 16–25 (2011).

    Article  PubMed  CAS  Google Scholar 

  135. Weng, W. et al. YY1-C/EBPα-miR34a regulatory circuitry is involved in renal cell carcinoma progression. Oncol. Rep. 31, 1921–1927 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Liu, J. J. et al. A novel AP-1/miR-101 regulatory feedback loop and its implication in the migration and invasion of hepatoma cells. Nucleic Acids Res. 42, 12041–12051 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kim, N. H. et al. A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J. Cell Biol. 195, 417–433 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Siemens, H. et al. miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 10, 4256–4271 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Aguda, B. D., Kim, Y., Piper-Hunter, M. G., Friedman, A. & Marsh, C. B. MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc. Natl Acad. Sci. USA 105, 19678–19683 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Liu, Z., Wu, C., Miao, H. & Wu, H. RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse. Database http://dx.doi.org/10.1093/database/bav095 (2015).

  141. Salmanidis, M., Pillman, K., Goodall, G. & Bracken, C. Direct transcriptional regulation by nuclear microRNAs. Int. J. Biochem. Cell Biol. 54, 304–311 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Kalantari, R., Chiang, C. & Corey, D. R. Regulation of mammalian transcription and splicing by nuclear RNAi. Nucleic Acids Res. 44, 524–537 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Hata, A. & Lieberman, J. Dysregulation of microRNA biogenesis and gene silencing in cancer. Sci. Signal. 8, re3 (2015).

    Article  PubMed  CAS  Google Scholar 

  144. Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA 101, 2999–3004 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhang, L. et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc. Natl Acad. Sci. USA 103, 9136–9141 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V. & Mendell, J. T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839–843 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Dews, M. et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat. Genet. 38, 1060–1065 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lujambio, A. et al. A microRNA DNA methylation signature for human cancer metastasis. Proc. Natl Acad. Sci. USA 105, 13556–13561 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Davis, B. N., Hilyard, A. C., Nguyen, P. H., Lagna, G. & Hata, A. Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol. Cell 39, 373–384 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Trabucchi, M. et al. The RNA-binding protein KSRP promotes the biogenesis of a subset of miRNAs. Nat. Genet. 459, 1010–1014 (2009).

    CAS  Google Scholar 

  151. Mori, M. et al. Hippo signaling regulates microprocessor and links cell density-dependent miRNA biogenesis to cancer. Cell 156, 893–906 (2015).

    Article  CAS  Google Scholar 

  152. Foulkes, W. D., Priest, J. R. & Duchaine, T. F. DICER1: mutations, microRNAs and mechanisms. Nat. Rev. Cancer 14, 662–672 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Doros, L. et al. DICER1 mutations in embryonal rhabdomyosarcomas from children with and without familial PPB-tumor predisposition syndrome. Pediatr. Blood Cancer 59, 558–560 (2012).

    Article  PubMed  Google Scholar 

  154. Tomiak, E., de Kock, L., Grynspan, D., Ramphal, R. & Foulkes, W. D. DICER1 mutations in an adolescent with cervical embryonal rhabdomyosarcoma (cERMS). Pediatr. Blood Cancer 61, 568–569 (2014).

    Article  PubMed  Google Scholar 

  155. Rakheja, D. et al. Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumors. Nat. Commun. 2, 4802 (2015).

    Google Scholar 

  156. Hill, D. A. et al. DICER1 mutations in familial pleuropulmonary blastoma. Science. 325, 965 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Torrezan, G. T. et al. Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour. Nat. Commun. 5, 4039 (2014).

    Article  CAS  PubMed  Google Scholar 

  158. Karube, Y. et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci. 96, 111–115 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Merritt, W. M. et al. Dicer, Drosha, and outcomes in patients with ovarian cancer. N. Engl. J. Med. 359, 2641–2650 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dehner, L. P. et al. Pleuropulmonary blastoma: evolution of an entity as an entry into a familial tumor predisposition syndrome. Pediatr. Dev. Pathol. 18, 504–511 (2015).

    Article  PubMed  Google Scholar 

  161. Yin, Y. et al. Fibroblast growth factor 9 regulation by microRNAs controls lung development and links DICER1 loss to the pathogenesis of pleuropulmonary blastoma. PLoS Genet. 11, e1005242 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Han, J. et al. Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136, 75–84 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Pinder, B. D. & Smibert, C. A. MicroRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein. EMBO Rep. 14, 80–86 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Knuckles, P. et al. Drosha regulates neurogenesis by controlling Neurogenin 2 expression independent of microRNAs. Nat. Neurosci. 15, 962–969 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Kaneko, H. et al. DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 471, 325–332 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wu, H., Xu, H., Miraglia, L. J. & Crooke, S. T. Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. J. Biol. Chem. 275, 36957–36965 (2000).

    Article  CAS  PubMed  Google Scholar 

  167. Oskowitz, A. Z., Penfornis, P., Tucker, A., Prockop, D. J. & Pochampally, R. Drosha regulates hMSCs cell cycle progression through a miRNA independent mechanism. Int. J. Biochem. Cell Biol. 43, 1563–1572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Johanson, T. M., Lew, A. M. & Chong, M. M. W. MicroRNA-independent roles of the RNase III enzymes Drosha and Dicer. Open Biol. 3, 130144 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Chong, M. M. W. et al. Canonical and alternate functions of the microRNA biogenesis machinery. Genes Dev. 24, 1951–1960 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Mayr, C. & Bartel, D. P. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138, 673–684 (2010). This study shows that mRNAs escape miRNA regulation through progressive 3′ UTR shortening during cancer progression.

    Article  CAS  Google Scholar 

  171. Lai, D.-P. et al. Genome-wide profiling of polyadenylation sites reveals a link between selective polyadenylation and cancer metastasis. Hum. Mol. Genet. 24, 3410–3417 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Kataoka, K. et al. Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers. Nature 534, 402–406 (2016).

    Article  CAS  PubMed  Google Scholar 

  173. Sandberg, R., Neilson, J. R., Sarma, A., Sharp, P. A. & Burge, C. B. Proliferating cells express mRNAs with shortened 3′UTRs and fewer microRNA target sites. Science. 320, 1643–1647 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Flavell, S. W. et al. Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron 60, 1022–1038 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ji, Z., Lee, J. Y., Pan, Z., Jiang, B. & Tian, B. Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc. Natl Acad. Sci. USA 106, 7028–7033 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Iawi, N. & Naraba, H. Polymorphisms in human pre-miRNAs. Biochem. Biophys. Res. Commun. 331, 1439–1444 (2005).

    Article  CAS  Google Scholar 

  177. Saunders, M. a, Liang, H. & Li, W.-H. Human polymorphism at microRNAs and microRNA target sites. Proc. Natl Acad. Sci. USA 104, 3300–3305 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Duan, R., Pak, C. H. & Jin, P. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum. Mol. Genet. 16, 1124–1131 (2007).

    Article  CAS  PubMed  Google Scholar 

  179. Dzikiewicz-Krawczyk, A. MicroRNA polymorphisms as markers of risk, prognosis and treatment response in hematological malignancies. Crit. Rev. Oncol. Hematol. 93, 1–17 (2015).

    Article  PubMed  Google Scholar 

  180. Wojcicka, A., de la Chapelle, A. & Jazdzewski, K. MicroRNA-related sequence variations in human cancers. Hum. Genet. 133, 463–469 (2014).

    Article  CAS  PubMed  Google Scholar 

  181. Chin, L. J. et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res. 68, 8535–8540 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kundu, S. T. et al. KRAS alleles: the LCS6 3′UTR variant and KRAS coding sequence mutations in the NCI-60 panel. Cell Cycle 11, 361–366 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Wang, X. et al. Single nucleotide polymorphism in the microRNA-199a binding site of HIF1A gene is associated with pancreatic ductal adenocarcinoma risk and worse clinical outcomes. Oncotarget 7, 13717–13729 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Zhang, L. et al. Functional SNP in the microRNA-367 binding site in the 3′UTR of the calcium channel ryanodine receptor gene 3 (RYR3) affects breast cancer risk and calcification. Proc. Natl Acad. Sci. USA 108, 13653–13658 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Yu, Z. et al. Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers. Nucleic Acids Res. 35, 4535–4541 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Sato, F., Tsuchiya, S., Meltzer, S. J. & Shimizu, K. MicroRNAs and epigenetics. FEBS Lett. 278, 1598–1609 (2011).

    Article  CAS  Google Scholar 

  187. Gruber, A. J. & Zavolan, M. Modulation of epigenetic regulators and cell fate decisions by miRNAs. Epigenomics 5, 671–683 (2013).

    Article  CAS  PubMed  Google Scholar 

  188. Pileticˇ, K. & Kunej, T. MicroRNA epigenetic signatures in human disease. Arch. Toxicol. http://dx.doi.org/10.1007/s00204-016-1815-7 (2016).

  189. Lai, X., Wolkenhauer, O. & Vera, J. Understanding microRNA-mediated gene regulatory networks through mathematical modelling. Nucleic Acids Res. 44, 6019–6035 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Chu, A. et al. Large-scale profiling of microRNAs for The Cancer Genome Atlas. Nucleic Acids Res. 44, e3 (2016).

    Article  PubMed  CAS  Google Scholar 

  191. Klonowska, K., Czubak, K. & Wojciechowska, M. Oncogenomic portals for the visualization and analysis of genome-wide cancer data. Oncotarget 7, 176–192 (2016).

    Article  PubMed  Google Scholar 

  192. Plass, C., Pfister, S. M., Lindroth, A. M. & Bogatyrova, O. Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat. Rev. Genet. 14, 765–780 (2013).

    Article  CAS  PubMed  Google Scholar 

  193. Hezaveh, K. et al. Alterations of miRNAs and miRNA-regulated mRNA expression in GC B cell lymphomas determined by integrative sequencing analysis. Haematologica http://dx.doi.org/10.3324/HAEMATOL.2016.143891 (2016).

  194. Kasinski, A. L. & Slack, F. J. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy Andrea. Nat. Rev. Cancer 11, 849–864 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kasinski, A. L. et al. A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer. Oncogene 34, 3547–3555 (2015).

    Article  CAS  PubMed  Google Scholar 

  196. Janssen, H. L. et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 368, 1685–1694 (2013).

    Article  CAS  PubMed  Google Scholar 

  197. Lanford, R. E. et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 327, 198–201 (2012).

    Article  CAS  Google Scholar 

  198. Monroig-Bosque, P. D. C., Rivera, C. A. & Calin, G. A. MicroRNAs in cancer therapeutics: ''from the bench to the bedside''. Expert Opin. Biol. Ther. 15, 1381–1385 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  199. Hausser, J. & Zavolan, M. Identification and consequences of miRNA-target interactions — beyond repression of gene expression. Nat. Rev. Genet. 15, 599–612 (2014).

    Article  CAS  PubMed  Google Scholar 

  200. Thomson, D. W., Bracken, C. P. & Goodall, G. J. Experimental strategies for microRNA target identification. Nucleic Acids Res. 39, 6845–6853 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Darnell, R. B. HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip. Rev. RNA 1, 266–286 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Friedman, R. C., Farh, K. K. H., Burge, C. B. & Bartel, D. P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Paraskevopoulou, M. D. et al. DIANA-LncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Res. 41, 239–245 (2013).

    Article  CAS  Google Scholar 

  204. Betel, D., Koppal, A., Agius, P., Sander, C. & Leslie, C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 11, R90 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Wong, N. & Wang, X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 43, D146–D152 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Bandyopadhyay, S. & Mitra, R. TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples. Bioinformatics 25, 2625–2631 (2009).

    Article  CAS  PubMed  Google Scholar 

  207. Krek, A. et al. Combinatorial microRNA target predictions. Nat. Genet. 37, 495–500 (2005).

    Article  CAS  PubMed  Google Scholar 

  208. Miranda, K. C. et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126, 1203–1217 (2006).

    Article  CAS  PubMed  Google Scholar 

  209. Boutz, D. R. et al. Two-tiered approach identifies a network of cancer and liver disease-related genes regulated by miR-122. J. Biol. Chem. 286, 18066–18078 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Leivonen, S.-K. et al. Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines. Oncogene 28, 3926–3936 (2009).

    Article  CAS  PubMed  Google Scholar 

  211. Hendrickson, D. G. et al. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol. 7, 25–29 (2009).

    Article  CAS  Google Scholar 

  212. Chi, S. W., Zang, J. B., Mele, A. & Darnell, R. B. Argonaute HITS–CLIP decodes microRNA–mRNA interaction maps. Nature 460, 479–486 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Orom, U. & Lund, A. Isolation of microRNA targets using biotinylated synthetic microRNAs. Methods 43, 162–165 (2007).

    Article  CAS  PubMed  Google Scholar 

  214. Hunter, S. E. et al. Functional genomic analysis of the let-7 regulatory network in Caenorhabditis elegans. PLoS Genet. 9, e1003353 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Didiano, D. & Hobert, O. Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nat. Struct. Mol. Biol. 13, 849–851 (2006).

    Article  CAS  PubMed  Google Scholar 

  216. Doench, J. G. & Sharp, P. A. Specificity of microRNA target selection in translational repression. Genes (Basel) 504, 504–511 (2004).

    Article  CAS  Google Scholar 

  217. Yang, J. H. et al. StarBase: a database for exploring microRNA–mRNA interaction maps from Argonaute CLIP-seq and Degradome-seq data. Nucleic Acids Res. 39, 202–209 (2011).

    Article  CAS  Google Scholar 

  218. Kanehisa, M., Sato, Y., Kanwashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).

    Article  CAS  PubMed  Google Scholar 

  219. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Steinfeld, I., Navon, R., Ach, R. & Yakhini, Z. miRNA target enrichment analysis reveals directly active miRNAs in health and disease. Nucleic Acids Res. 41, e45 (2013).

    Article  CAS  PubMed  Google Scholar 

  221. Vlachos, I. S. et al. DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res. 40, 498–504 (2012).

    Article  CAS  Google Scholar 

  222. Laczny, C. et al. miRTrail — a comprehensive webserver for analyzing gene and miRNA patterns to enhance the understanding of regulatory mechanisms in diseases. BMC Bioinformatics 13, 36 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Jung, D. et al. miRTarVis: an interactive visual analysis tool for microRNA–mRNA expression profile data. BMC Proc. 9, S2 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Fan, Y. et al. miRNet — dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res. 1, W135–W141 (2016).

    Article  CAS  Google Scholar 

  225. Yang, K., Hsu, C., Lin, C., Juan, H. & Huang, H. Mirin: identifying microRNA regulatory modules in protein–protein interaction networks. Bioinformatics 30, 2527–2528 (2014).

    Article  CAS  PubMed  Google Scholar 

  226. Sales, G. et al. MAGIA, a web-based tool for miRNA and genes integrated analysis. Nucleic Acids Res. 38, 352–359 (2010).

    Article  CAS  Google Scholar 

  227. Backes, C., Khaleeq, Q. T., Meese, E. & Keller, A. miEAA: microRNA enrichment analysis and annotation. Nucleic Acids Res. 44, 110–116 (2016).

    Article  CAS  Google Scholar 

  228. Lu, M., Shi, B., Wang, J., Cao, Q. & Cui, Q. TAM: a method for enrichment and depletion analysis of a microRNA category in a list of microRNAs. Bioinformatics 11, 419 (2010).

    PubMed  PubMed Central  Google Scholar 

  229. Lu, T. et al. miRSystem: an integrated system for characterizing enriched functions and pathways of microRNA targets. PLoS ONE 7, e42390 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Wu, X. & Watson, M. CORNA: testing gene lists for regulation by microRNAs. Bioinformatics 25, 832–833 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Nam, S. et al. MicroRNA and mRNA Integrated Analysis (MMIA): a web tool for examining biological functions of microRNA expression. Nucleic Acids Res. 37, 356–362 (2009).

    Article  CAS  Google Scholar 

  232. Ulitsky, I., Laurent, L. C. & Shamir, R. Towards computational prediction of microRNA function and activity. Nucleic Acids Res. 38, e160 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Corapcioglu, M. E. & Hasan, O. BioSystems miSEA: microRNA set enrichment analysis. Biosystems 134, 37–42 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.P.B. is supported by a Florey Fellowship from the Royal Adelaide Hospital Research Foundation, and H.S.S. and G.J.G. are supported by fellowships from the Australian National Health and Medical Research Council (GNT1023059 and GNT1026191). C.P.B., H.S.S. and G.J.G. acknowledge grant funding from the Australian National Health and Medical Research Council (GNT1034633 and GNT1069128 to G.J.G. and C.P.B., and GNT1068773 to G.J.G.) and the Australian National Breast Cancer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cameron P. Bracken or Gregory J. Goodall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

DATABASES

miRBase

PowerPoint slides

Glossary

MicroRNA

(miRNA). Short ( 19–25 nucleotides in length) non-coding RNA that forms the target recognition component of the RNA-induced silencing complex.

RNA-induced silencing complex

(RISC). Ribonucleoprotein complex containing an Argonaute-bound microRNA that enables target recognition and accessory proteins that collectively mediate target destabilization and translational inhibition.

Argonaute

(AGO). The microRNA-binding protein in RNA-induced silencing complex. Four different AGO proteins, AGO1–AGO4, are present in mammals.

Seed region

The predominant target-recognition region of a microRNA, typically nucleotides 2–8 from the 5′ end. In recognition of the importance of the seed, microRNAs are grouped into families of shared seed sequence.

Liquid biopsies

Analyses of gene expression from circulating tumour cells and cell-free tumour DNA released into the blood or lymphatic system. Used as a means to improve diagnosis and treatment strategy.

Focal adhesion

Dynamic membrane-associated protein complexes through which the internal cell cytoskeleton connects with the surrounding extracellular matrix.

Invadopodia

Actin-rich extensions of the cell membrane that are associated with extracellular matrix degradation in cancer cell invasion.

Polycistronic cluster

Two or more genes or microRNAs that are encoded (and presumably co-expressed) from a single parental transcript.

3′ untranslated regions

(3′ UTRs). The part of the mRNA transcript 3′ to the protein coding region that constitutes the main functional microRNA-targeting region.

KEGG

(Kyoto Encyclopedia of Genes and Genomes). Database of biological pathways commonly used as a resource for understanding high-level functions of a biological system from gene-level information derived from high-throughput experimental techniques.

Epithelial–mesenchymal transition

(EMT). A process regulated by a complex gene-expression programme through which epithelial cells, which normally maintain close contacts with their neighbours through tight junctions, adherens junctions and desmosomes, transition towards a mesenchymal phenotype, whereby cells dissociate from their neighbours and become motile. Carcinomas, the most common form of solid tumours, arise from epithelial cells, with EMT being an important (although controversial) step in the progression to metastasis.

Drosha

The nuclear RNase-type III enzyme in the microprocessor complex (along with DGCR8) that cleaves the precursor microRNA stem–loop from the microRNA primary transcript (pri-miRNA).

Dicer

A second RNase-type III enzyme that operates in the biogenesis pathway downstream of Drosha to cleave precursor microRNAs in the cytoplasm to generate mature microRNAs that are loaded onto Argonaute.

Mammosphere

Spherical structures that are formed from the clonal growth of mammary-derived cells that have stem cell-like properties.

Xenograft

Cell, tissue or organ transplant from the donor of one species into a recipient of another species.

OncomiR

A microRNA that has been functionally associated with the promotion of cancer.

Axial patterning

Control of body morphology through the actions of homeotic genes.

Network motif

Recurrent and statistically significant patterns of genetic interconnections in complex biological networks.

HITS–CLIP

(High-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation). Methodology by which Argonaute–microRNA–mRNA targets are crosslinked (by ultraviolet light) and purified (by Argonaute immunoprecipitation) to reveal microRNA targets on a global scale using high-throughput sequencing.

Fragile sites

Specific and heritable chromosomal locations that are prone to breakage on replication stress, especially in cancer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bracken, C., Scott, H. & Goodall, G. A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 17, 719–732 (2016). https://doi.org/10.1038/nrg.2016.134

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2016.134

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer