Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Estrogens as regulators of bone health in men

Abstract

Bone metabolism is influenced by sex steroids during growth and adulthood in both men and women. Although this influence is well described in women, the relative importance of androgens and estrogens in the regulation of the male skeleton remains uncertain. Even though estradiol has been considered the 'female hormone', levels of serum estradiol in elderly men are higher than those in postmenopausal women. Estradiol levels are more strongly associated with BMD, bone turnover and bone loss than testosterone levels are in adult men. Case reports of young men with estrogen resistance or aromatase deficiency also suggest a crucial role for estradiol in regulation of skeletal growth in men. Moreover, serum levels of both estrogens and androgens are inversely associated with the risk of fracture in aging men. A large, prospective, population-based study showed that levels of serum estradiol predict the risk of fracture, independently of serum testosterone. Evidence suggests that a threshold level of estradiol exists below which the male skeleton is impaired; rates of bone loss and fracture seem to be increased and bone maturation delayed in men with estradiol levels below this threshold. On the basis of these findings, we propose that not only androgens, but also estrogens, are important regulators of bone health in men.

Key Points

  • Sex steroids influence growth and maintenance of the skeleton in both men and women

  • Serum levels of estradiol are higher in aging men than in postmenopausal women

  • Studies of men with estrogen resistance or aromatase deficiency demonstrated the importance of estrogens in skeletal maturation and growth-plate closure in men, which led to a paradigm shift

  • Cross-sectional and longitudinal studies showed that serum levels of estrogens are more strongly associated with BMD and bone loss than levels of androgens are in adult and aging men

  • Serum levels of both androgens and estrogens are inversely associated with incident fractures in elderly men

  • Recent evidence suggests that a threshold level exists for estradiol in adult men; subthreshold levels are associated with increased fracture risk, bone loss and delayed bone maturation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bioavailable estradiol levels in three groups of men (young, aged 22–39 years; middle-aged, aged 40–59 years; and elderly, aged 60–90 years) and in premenopausal and postmenopausal women from Rochester, MN.
Figure 2: Proposed estradiol threshold levels for bone health in men.
Figure 3: Effects of serum sex-steroid levels on fracture risk in elderly men in the MrOS Sweden study.59

Similar content being viewed by others

References

  1. Riggs, B. L., Khosla, S. & Melton, L. J. 3rd. Sex steroids and the construction and conservation of the adult skeleton. Endocr. Rev. 23, 279–302 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Vanderschueren, D. et al. Androgens and bone. Endocr. Rev. 25, 389–425 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Windahl, S. H., Vidal, O., Andersson, G., Gustafsson, J. A. & Ohlsson C. Increased cortical bone mineral content but unchanged trabecular bone mineral density in female ERβ(−/−) mice. J. Clin. Invest. 104, 895–901 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vidal, O. et al. Estrogen receptor specificity in the regulation of skeletal growth and maturation in male mice. Proc. Natl Acad. Sci. USA 97, 5474–5479 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moverare, S. et al. Differential effects on bone of estrogen receptor α and androgen receptor activation in orchidectomized adult male mice. Proc. Natl Acad. Sci. USA 100, 13573–13578 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sims, N. A. et al. A functional androgen receptor is not sufficient to allow estradiol to protect bone after gonadectomy in estradiol receptor-deficient mice. J. Clin. Invest. 111, 1319–1327 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Venken, K. et al. Relative impact of androgen and estrogen receptor activation in the effects of androgens on trabecular and cortical bone in growing male mice: a study in the androgen receptor knockout mouse model. J. Bone Miner. Res. 21, 576–585 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Labrie, F. et al. Comparable amounts of sex steroids are made outside the gonads in men and women: strong lesson for hormone therapy of prostate and breast cancer. J. Steroid Biochem. Mol. Biol. 113, 52–56 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Khosla, S. Melton, L. J. 3rd, Atkinson, E. J. & O'Fallon, W. M. Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J. Clin. Endocrinol. Metab. 86, 3555–3561 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Riggs, B. L., Khosla, S. & Melton, L. J. 3rd. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J. Bone Miner. Res. 13, 763–773 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Stepan, J. J., Lachman, M., Zverina, J., Pacovský, V. & Baylink, D. J. Castrated men exhibit bone loss: effect of calcitonin treatment on biochemical indices of bone remodeling. J. Clin. Endocrinol. Metab. 69, 523–527 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Smith, E. P. et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N. Engl. J. Med. 331, 1056–1061 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Smith, E. P. et al. Impact on bone of an estrogen receptor-α gene loss of function mutation. J. Clin. Endocrinol. Metab. 93, 3088–3096 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morishima, A., Grumbach, M. M., Simpson, E. R., Fisher, C. & Qin, K. Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J. Clin. Endocrinol. Metab. 80, 3689–3698 (1995).

    CAS  PubMed  Google Scholar 

  15. Carani, C. et al. Effect of testosterone and estradiol in a man with aromatase deficiency. N. Engl. J. Med. 337, 91–95 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Bilezikian, J. P., Morishima, A., Bell, J. & Grumbach, M. M. Increased bone mass as a result of estrogen therapy in a man with aromatase deficiency. N. Engl. J. Med. 339, 599–603 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Rochira, V., Faustini-Fustini, M., Balestrieri, A. & Carani, C. Estrogen replacement therapy in a man with congenital aromatase deficiency: effects of different doses of transdermal estradiol on bone mineral density and hormonal parameters. J. Clin. Endocrinol. Metab. 85, 1841–1845 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Herrmann, B. L. et al. Impact of estrogen replacement therapy in a male with congenital aromatase deficiency caused by a novel mutation in the CYP19 gene. J. Clin. Endocrinol. Metab. 87, 5476–5484 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Bouillon, R., Bex, M., Vanderschueren, D. & Boonen, S. Estrogens are essential for male pubertal periosteal bone expansion. J. Clin. Endocrinol. Metab. 89, 6025–6029 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Lanfranco, F. et al. A novel mutation in the human aromatase gene: insights on the relationship among serum estradiol, longitudinal growth and bone mineral density in an adult man under estrogen replacement treatment. Bone 43, 628–635 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Bertelloni, S., Baroncelli, G. I., Battini, R., Perri, G. & Saggese, G. Short-term effects of testosterone treatment on reduced bone density in boys with constitutional delay of puberty. J. Bone Miner. Res. 10, 1488–1495 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Finkelstein, J. S., Klibanski, A. & Neer, R. M. A longitudinal evaluation of bone mineral density in adult men with histories of delayed puberty. J. Clin. Endocrinol. Metab. 81, 1152–1155 (1996).

    CAS  PubMed  Google Scholar 

  23. Seeman, E. Sexual dimorphism in skeletal size, density, and strength. J. Clin. Endocrinol. Metab. 86, 4576–4584 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Turner, R. T., Wakley, G. K. & Hannon, K. S. Differential effects of androgens on cortical bone histomorphometry in gonadectomized male and female rats. J. Orthop. Res. 8, 612–617 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Lorentzon, M., Swanson, C., Andersson, N., Mellström, D. & Ohlsson, C. Free testosterone is a positive, whereas free estradiol is a negative, predictor of cortical bone size in young Swedish men: the GOOD study. J. Bone Miner. Res. 20, 1334–1341 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Greendale, G. A., Edelstein, S. & Barrett-Connor, E. Endogenous sex steroids and bone mineral density in older women and men: the Rancho Bernardo study. J. Bone Miner. Res. 12, 1833–1843 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Khosla, S. et al. Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J. Clin. Endocrinol. Metab. 83, 2266–2274 (1998).

    CAS  PubMed  Google Scholar 

  28. Orwoll, E. et al. Testosterone and estradiol among older men. J. Clin. Endocrinol. Metab. 91, 1336–1344 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Slemenda, C. W. et al. Sex steroids and bone mass in older men. Positive associations with serum estrogens and negative associations with androgens. J. Clin. Invest. 100, 1755–1759 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ongphiphadhanakul, B., Rajatanavin, R., Chanprasertyothin, S., Piaseu, N. & Chailurkit, L. Serum oestradiol and oestrogen-receptor gene polymorphism are associated with bone mineral density independently of serum testosterone in normal males. Clin. Endocrinol. (Oxf.) 49, 803–809 (1998).

    Article  CAS  Google Scholar 

  31. Center, J. R., Nguyen, T. V., Sambrook, P. N. & Eisman, J. A. Hormonal and biochemical parameters in the determination of osteoporosis in elderly men. J. Clin. Endocrinol. Metab. 84, 3626–3635 (1999).

    CAS  PubMed  Google Scholar 

  32. Amin, S. et al. Association of hypogonadism and estradiol levels with bone mineral density in elderly men from the Framingham study. Ann. Intern. Med. 133, 951–963 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. van den Beld, A. W., de Jong, F. H., Grobbee, D. E., Pols, H. A. & Lamberts, S. W. Measures of bioavailable serum testosterone and estradiol and their relationships with muscle strength, bone density, and body composition in elderly men. J. Clin. Endocrinol. Metab. 85, 3276–3282 (2000).

    CAS  PubMed  Google Scholar 

  34. Szulc, P. et al. Bioavailable estradiol may be an important determinant of osteoporosis in men: the MINOS study. J. Clin. Endocrinol. Metab. 86, 192–199 (2001).

    CAS  PubMed  Google Scholar 

  35. Mellström, D. et al. Free testosterone is an independent predictor of BMD and prevalent fractures in elderly men: MrOS Sweden. J. Bone Miner. Res. 21, 529–535 (2006).

    Article  PubMed  Google Scholar 

  36. Araujo, A. B., Travison, T. G., Leder, B. Z. & McKinlay, J. B. Correlations between serum testosterone, estradiol, and sex hormone-binding globulin and bone mineral density in a diverse sample of men. J. Clin. Endocrinol. Metab. 93, 2135–2141 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Van Pottelbergh, I., Goemaere, S. & Kaufman, J. M. Bioavailable estradiol and an aromatase gene polymorphism are determinants of bone mineral density changes in men over 70 years of age. J. Clin. Endocrinol. Metab. 88, 3075–3081 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Gennari, L. et al. Longitudinal association between sex hormone levels, bone loss, and bone turnover in elderly men. J. Clin. Endocrinol. Metab. 88, 5327–5333 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Khosla, S. et al. Relationship of volumetric BMD and structural parameters at different skeletal sites to sex steroid levels in men. J. Bone Miner. Res. 20, 730–740 (2005).

    Article  PubMed  Google Scholar 

  40. Falahati-Nini, A. et al. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J. Clin. Invest. 106, 1553–1560 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Leder, B. Z., LeBlanc, K. M., Schoenfeld, D. A., Eastell, R. & Finkelstein, J. S. Differential effects of androgens and estrogens on bone turnover in normal men. J. Clin. Endocrinol. Metab. 88, 204–210 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Smith, M. R., Fallon, M. A., Lee, H. & Finkelstein, J. S. Raloxifene to prevent gonadotropin-releasing hormone agonist-induced bone loss in men with prostate cancer: a randomized controlled trial. J. Clin. Endocrinol. Metab. 89, 3841–3846 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Doran, P. M., Riggs, B. L., Atkinson, E. J. & Khosla, S. Effects of raloxifene, a selective estrogen receptor modulator, on bone turnover markers and serum sex steroid and lipid levels in elderly men. J. Bone Miner. Res. 16, 2118–2125 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Taxel, P. et al. The effect of aromatase inhibition on sex steroids, gonadotropins, and markers of bone turnover in older men. J. Clin. Endocrinol. Metab. 86, 2869–2874 (2001).

    CAS  PubMed  Google Scholar 

  45. Kaufman, J. M. & Vermeulen, A. The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr. Rev. 26, 833–876 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Gennari, L. et al. A polymorphic CYP19 TTTA repeat influences aromatase activity and estrogen levels in elderly men: effects on bone metabolism. J. Clin. Endocrinol. Metab. 89, 2803–2810 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Eriksson, A. L. et al. Genetic variations in sex steroid-related genes as predictors of serum estrogen levels in men. J. Clin. Endocrinol. Metab. 94, 1033–1041 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Clarke, B. L. & Khosla, S. Androgens and bone. Steroids 74, 296–305 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Smith, M. R. Osteoporosis during androgen deprivation therapy for prostate cancer. Urology 60, 79–85 (2002).

    Article  PubMed  Google Scholar 

  50. Shahinian, V. B., Kuo, Y. F., Freeman, J. L. & Goodwin, J. S. Risk of fracture after androgen deprivation for prostate cancer. N. Engl. J. Med. 352, 154–164 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Behre, H. M., Kliesch, S., Leifke, E., Link, T. M. & Nieschlag, E. Long-term effect of testosterone therapy on bone mineral density in hypogonadal men. J. Clin. Endocrinol. Metab. 82, 2386–2390 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Snyder, P. J. et al. Effects of testosterone replacement in hypogonadal men. J. Clin. Endocrinol. Metab. 85, 2670–2677 (2000).

    CAS  PubMed  Google Scholar 

  53. Wang, C. et al. Effects of transdermal testosterone gel on bone turnover markers and bone mineral density in hypogonadal men. Clin. Endocrinol. 54, 739–750 (2001).

    Article  Google Scholar 

  54. Barrett-Connor, E. et al. Low levels of estradiol are associated with vertebral fractures in older men, but not women: the Rancho Bernardo Study. J. Clin. Endocrinol. Metab. 85, 219–223 (2000).

    CAS  PubMed  Google Scholar 

  55. Goderie-Plomp, H. W. et al. Endogenous sex hormones, sex hormone-binding globulin, and the risk of incident vertebral fractures in elderly men and women: the Rotterdam Study. J. Clin. Endocrinol. Metab. 89, 3261–3269 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Bjornerem, A. et al. A prospective study of sex steroids, sex hormone-binding globulin, and non-vertebral fractures in women and men: the Tromso Study. Eur. J. Endocrinol. 157, 119–125 (2007).

    Article  PubMed  Google Scholar 

  57. Amin, S. et al. Estradiol, testosterone, and the risk for hip fractures in elderly men from the Framingham Study. Am. J. Med. 119, 426–433 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Meier, C. et al. Endogenous sex hormones and incident fracture risk in older men: the Dubbo Osteoporosis Epidemiology Study. Arch. Intern. Med. 168, 47–54 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Mellström, D. et al. Older men with low serum estradiol and high serum SHBG have an increased risk of fractures. J. Bone Miner. Res. 23, 1552–1560 (2008).

    Article  PubMed  Google Scholar 

  60. Khosla, S., Melton, L. J. 3rd & Riggs, B. L. Clinical review 144: estrogen and the male skeleton. J. Clin. Endocrinol. Metab. 87, 1443–1450 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Ly, L. P. & Handelsman, D. J. Empirical estimation of free testosterone from testosterone and sex hormone-binding globulin immunoassays. Eur. J. Endocrinol. 152, 471–478 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Sartorius, G., Ly, L. P., Sikaris, K., McLachlan, R. & Handelsman, D. J. Predictive accuracy and sources of variability in calculated free testosterone estimates. Ann. Clin. Biochem. 46, 137–143 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Cummings, S. R. et al. Endogenous hormones and the risk of hip and vertebral fractures among older women. Study of Osteoporotic Fractures Research Group. N. Engl. J. Med. 339, 733–738 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Center, J. R. Nguyen, T. V., Sambrook, P. N. & Eisman, J. A. Hormonal and biochemical parameters and osteoporotic fractures in elderly men. J. Bone Miner. Res. 15, 1405–1411 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Legrand, E. et al. Osteoporosis in men: a potential role for the sex hormone binding globulin. Bone 29, 90–95 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' own work cited in this Review was supported by the Swedish Research Council, the Swedish Foundation for Strategic Research, The ALF–LUA research grant in Gothenburg, the Lundberg Foundation, and the Torsten and Ragnar Söderberg's Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claes Ohlsson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandenput, L., Ohlsson, C. Estrogens as regulators of bone health in men. Nat Rev Endocrinol 5, 437–443 (2009). https://doi.org/10.1038/nrendo.2009.112

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2009.112

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing