Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Serine, glycine and one-carbon units: cancer metabolism in full circle

Key Points

  • One-carbon metabolism integrates cellular nutrient status by cycling carbon units from amino acid inputs to generate diverse outputs, including redox maintenance and cellular biosynthesis.

  • The epigenetic status of cells also seems to be directly linked to one-carbon metabolism through protein and nucleic acid methylation.

  • One-carbon metabolism has long been the focus of antimetabolite-based chemotherapy that includes the agents methotrexate and 5-fluorouracil — two of the most widely used chemotherapies. Additional therapies are currently being explored.

  • Recent findings have provided genetic and functional evidence that multiple nodes in the pathway contain candidate driver genes for oncogenesis.

  • Additional research in one-carbon metabolism may provide biomarkers that would enable advances in patient selection for antimetabolite chemotherapy.

Abstract

One-carbon metabolism involving the folate and methionine cycles integrates nutritional status from amino acids, glucose and vitamins, and generates diverse outputs, such as the biosynthesis of lipids, nucleotides and proteins, the maintenance of redox status and the substrates for methylation reactions. Long considered a 'housekeeping' process, this pathway has recently been shown to have additional complexity. Genetic and functional evidence suggests that hyperactivation of this pathway is a driver of oncogenesis and establishes a link to cellular epigenetic status. Given the wealth of clinically available agents that target one-carbon metabolism, these new findings could present opportunities for translation into precision cancer medicine.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: (Timeline): One-carbon metabolism in cancer
Figure 2: One-carbon metabolism is an integrator of nutrient status.
Figure 3: Folate and methionine metabolism constitute one-carbon metabolism.
Figure 4: Nutrients that fuel one-carbon metabolism.
Figure 5: One-carbon metabolism, cancer pathology and intervention.

Similar content being viewed by others

References

  1. DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. & Thompson, C. B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell. Metab. 7, 11–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Locasale, J. W. & Cantley, L. C. Metabolic flux and the regulation of mammalian cell growth. Cell. Metab. 14, 443–451 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nature Rev. Cancer 11, 85–95 (2011).

    Article  CAS  Google Scholar 

  5. Ward, P. S. & Thompson, C. B. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21, 297–308 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schulze, A. & Harris, A. L. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491, 364–373 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. de Koning, T. J. et al. L-serine in disease and development. Biochem. J. 371, 653–661 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kalhan, S. C. & Hanson, R. W. Resurgence of serine: an often neglected but indispensable amino acid. J. Biol. Chem. 287, 19786–19791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shane, B. & Stokstad, E. L. Vitamin B12-folate interrelationships. Annu. Rev. Nutr. 5, 115–141 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Stipanuk, M. H. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu. Rev. Nutr. 24, 539–577 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Stover, P. J. Physiology of folate and vitamin B12 in health and disease. Nutr. Rev. 62, S3–S13 (2004).

    Article  PubMed  Google Scholar 

  12. Farber, S. et al. The action of pteroylglutamic conjugates on man. Science 106, 619–621 (1947).

    Article  CAS  PubMed  Google Scholar 

  13. Farber, S., Diamond, L. K., Mercer, R.D., Sylvester, R. F. & Wolff, J. A. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. New Engl. J. Med. 238, 787–793 (1948). This pioneering study by Sydney Farber and colleagues provided proof of concept of cancer chemotherapy. They demonstrated that chemically targeting folate metabolism could induce remissions in patients with leukaemia.

    Article  CAS  PubMed  Google Scholar 

  14. Chabner, B. A. & Roberts, T. G. Jr. Chemotherapy and the war on cancer. Nature Rev. Cancer 5, 65–72 (2005).

    Article  CAS  Google Scholar 

  15. Johnston, P. G. et al. Antimetabolites. Cancer Chemother. Biol. Response Modif. 17, 1–39 (1997).

    CAS  PubMed  Google Scholar 

  16. Chabner, B. A., Myers, C. E., Coleman, C. N. & Johns, D. G. The clinical pharmacology of antineoplastic agents (second of two parts). New Engl. J. Med. 292, 1159–1168 (1975).

    Article  CAS  PubMed  Google Scholar 

  17. Chabner, B. A., Myers, C. E., Coleman, C. N. & Johns, D. G. The clinical pharmacology of antineoplastic agents (first of two parts). New Engl. J. Med. 292, 1107–1113 (1975).

    Article  CAS  PubMed  Google Scholar 

  18. McKnight, S. L. On getting there from here. Science 330, 1338–1339 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. DeBerardinis, R. J. & Cheng, T. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29, 313–324 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Locasale, J. W. The consequences of enhanced cell-autonomous glucose metabolism. Trends Endocrinol. Metab. 23, 545–551 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Koppenol, W. H., Bounds, P. L. & Dang, C. V. Otto Warburg's contributions to current concepts of cancer metabolism. Nature Rev. Cancer 11, 325–337 (2011).

    Article  CAS  Google Scholar 

  22. DeBerardinis, R. J. Serine metabolism: some tumors take the road less traveled. Cell. Metab. 14, 285–286 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Birsoy, K., Sabatini, D. M. & Possemato, R. Untuning the tumor metabolic machine: targeting cancer metabolism: a bedside lesson. Nature Med. 18, 1022–1023 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Zoncu, R., Efeyan, A. & Sabatini, D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Rev. Mol. Cell Biol. 12, 21–35 (2011).

    Article  CAS  Google Scholar 

  25. Wallingford, J. B., Niswander, L. A., Shaw, G. M. & Finnell, R. H. The continuing challenge of understanding, preventing, and treating neural tube defects. Science 339, http://dx.doi.org/10.1126/science.1222002 (2013).

  26. Iskandar, B. J. et al. Folate regulation of axonal regeneration in the rodent central nervous system through DNA methylation. J. Clin. Invest. 120, 1603–1616 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roth, C. et al. Folic acid supplements in pregnancy and severe language delay in children. JAMA 306, 1566–1573 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, J. et al. Dependence of mouse embryonic stem cells on threonine catabolism. Science 325, 435–439 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vander Heiden, M. G. et al. Metabolic pathway alterations that support cell proliferation. Cold Spring Harbor Symp. Quant. Biol. 76, 325–334 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Deberardinis, R. J., Sayed, N., Ditsworth, D. & Thompson, C. B. Brick by brick: metabolism and tumor cell growth. Curr. Opin. Genet. Dev. 18, 54–61 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Finkelstein, J. D. Methionine metabolism in mammals. J. Nutrit. Biochem. 1, 228–237 (1990).

    Article  CAS  Google Scholar 

  32. Tong, X., Zhao, F. & Thompson, C. B. The molecular determinants of de novo nucleotide biosynthesis in cancer cells. Curr. Opin. Genet. Dev. 19, 32–37 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gumaa, K. A., MacLeod, R. M. & McLean, P. The pentose phosphate pathway of glucose metabolism. Influence of a growth-hormone-secreting pituitary tumour on the oxidative and non-oxidative reactions of the cycle in liver. Biochem. J. 113, 215–220 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zatz, M., Dudley, P. A., Kloog, Y. & Markey, S. P. Nonpolar lipid methylation. Biosynthesis of fatty acid methyl esters by rat lung membranes using S-adenosylmethionine. J. Biol. Chem. 256, 10028–10032 (1981).

    CAS  PubMed  Google Scholar 

  35. Spector, A. A. & Yorek, M. A. Membrane lipid composition and cellular function. J. Lipid Res. 26, 1015–1035 (1985).

    CAS  PubMed  Google Scholar 

  36. Aveldano, M. I. & Bazan, N. G. Molecular species of phosphatidylcholine, -ethanolamine, -serine, and -inositol in microsomal and photoreceptor membranes of bovine retina. J. Lipid Res. 24, 620–627 (1983).

    CAS  PubMed  Google Scholar 

  37. Kinney, A. J. & Moore, T. S. Phosphatidylcholine Synthesis in Castor Bean Endosperm: I. Metabolism of l-Serine. Plant Physiol. 84, 78–81 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hickman, M. J. et al. Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast. Mol. Biol. Cell 22, 4192–4204 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rowe, P. B. & Lewis, G. P. Mammalian folate metabolism. Regulation of folate interconversion enzymes. Biochemistry 12, 1862–1869 (1973).

    Article  CAS  PubMed  Google Scholar 

  40. Bennett, B. D. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nature Chem. Biol. 5, 593–599 (2009).

    Article  CAS  Google Scholar 

  41. Bennett, B. D., Yuan, J., Kimball, E. H. & Rabinowitz, J. D. Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach. Nature Protoc. 3, 1299–1311 (2008).

    Article  CAS  Google Scholar 

  42. Paul, B. D. & Snyder, S. H. H2S signalling through protein sulfhydration and beyond. Nature Rev. Mol. Cell Biol. 13, 499–507 (2012).

    Article  CAS  Google Scholar 

  43. Yun, J., Johnson, J. L., Hanigan, C. L. & Locasale, J. W. Interactions between epigenetics and metabolism in cancers. Front. Oncol. 2, 163 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Anderson, O. S., Sant, K. E. & Dolinoy, D. C. Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J. Nutrit. Biochem. 23, 853–859 (2012).

    Article  CAS  Google Scholar 

  45. Katada, S., Imhof, A. & Sassone-Corsi, P. Connecting threads: epigenetics and metabolism. Cell 148, 24–28 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Gluckman, P. D. Epigenetics and metabolism in 2011: epigenetics, the life-course and metabolic disease. Nature Rev. Endocrinol. 8, 74–76 (2012).

    Article  CAS  Google Scholar 

  47. Teperino, R., Schoonjans, K. & Auwerx, J. Histone methyl transferases and demethylases; can they link metabolism and transcription? Cell. Metab. 12, 321–327 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, C., Nott, T. J., Jin, J. & Pawson, T. Deciphering arginine methylation: Tudor tells the tale. Nature Rev. Mol. Cell Biol. 12, 629–642 (2011).

    Article  CAS  Google Scholar 

  49. Yang, Y. & Bedford, M. T. Protein arginine methyltransferases and cancer. Nature Rev. Cancer 13, 37–50 (2013).

    Article  CAS  Google Scholar 

  50. Chiang, P. K. et al. S-Adenosylmethionine and methylation. FASEB J. 10, 471–480 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Heby, O. & Persson, L. Molecular genetics of polyamine synthesis in eukaryotic cells. Trends Biochem. Sci. 15, 153–158 (1990).

    Article  CAS  PubMed  Google Scholar 

  52. Snyder, S. H. & Russell, D. H. Polyamine synthesis in rapidly growing tissues. Fed. Proc. 29, 1575–1582 (1970).

    CAS  PubMed  Google Scholar 

  53. Janne, J., Raina, A. & Siimes, M. Mechanism of stimulation of polyamine synthesis by growth hormone in rat liver. Biochim. Biophys. Acta 166, 419–426 (1968).

    Article  CAS  PubMed  Google Scholar 

  54. Farber, S. Some observations on the effect of folic acid antagonists on acute leukemia and other forms of incurable cancer. Blood 4, 160–167 (1949).

    CAS  PubMed  Google Scholar 

  55. Vogelzang, N. J. et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J. Clin. Oncol. 21, 2636–2644 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Vander Heiden, M. G. Targeting cancer metabolism: a therapeutic window opens. Nature Rev. Drug Discov. 10, 671–684 (2011).

    Article  CAS  Google Scholar 

  57. Cheson, B. D. New antimetabolites in the treatment of human malignancies. Seminars Oncol. 19, 695–706 (1992).

    CAS  Google Scholar 

  58. Bertino, J. R. & New York Academy of Sciences. Section of Biological and Medical Sciences. Folate Antagonists As Chemotherapeutic Agents. (New York Academy of Sciences, 1971).

    Google Scholar 

  59. Sirotnak, F. M. Folate Antagonists As Therapeutic Agents. (Academic Press, 1984).

    Google Scholar 

  60. Baram, J., Allegra, C. J., Fine, R. L. & Chabner, B. A. Effect of methotrexate on intracellular folate pools in purified myeloid precursor cells from normal human bone marrow. J. Clin. Invest. 79, 692–697 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Allegra, C. J., Fine, R. L., Drake, J. C. & Chabner, B. A. The effect of methotrexate on intracellular folate pools in human MCF-7 breast cancer cells. Evidence for direct inhibition of purine synthesis. J. Biol. Chem. 261, 6478–6485 (1986).

    CAS  PubMed  Google Scholar 

  62. Diasio, R. B. & Harris, B. E. Clinical pharmacology of 5-fluorouracil. Clin. Pharmacokinet. 16, 215–237 (1989).

    Article  CAS  PubMed  Google Scholar 

  63. Pinedo, H. M. & Peters, G. F. Fluorouracil: biochemistry and pharmacology. J. Clin. Oncol. 6, 1653–1664 (1988).

    Article  CAS  PubMed  Google Scholar 

  64. Spears, C. P., Shahinian, A. H., Moran, R. G., Heidelberger, C. & Corbett, T. H. In vivo kinetics of thymidylate synthetase inhibition of 5-fluorouracil-sensitive and -resistant murine colon adenocarcinomas. Cancer Res. 42, 450–456 (1982).

    CAS  PubMed  Google Scholar 

  65. Burris, H. A. et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol. 15, 2403–2413 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Plunkett, W. et al. Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Seminars Oncol. 22, 3–10 (1995).

    CAS  Google Scholar 

  67. Heinemann, V., Schulz, L., Issels, R. D. & Plunkett, W. Gemcitabine: a modulator of intracellular nucleotide and deoxynucleotide metabolism. Seminars Oncol. 22, 11–18 (1995).

    CAS  Google Scholar 

  68. Bouffard, D. Y., Laliberte, J. & Momparler, R. L. Kinetic studies on 2′,2′-difluorodeoxycytidine (Gemcitabine) with purified human deoxycytidine kinase and cytidine deaminase. Biochem. Pharmacol. 45, 1857–1861 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Jones, P. A. & Baylin, S. B. The epigenomics of cancer. Cell 128, 683–692 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yoo, C. B. & Jones, P. A. Epigenetic therapy of cancer: past, present and future. Nature Rev. Drug Discov. 5, 37–50 (2006).

    Article  CAS  Google Scholar 

  71. Egger, G., Liang, G., Aparicio, A. & Jones, P. A. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457–463 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Rodriguez-Paredes, M. & Esteller, M. Cancer epigenetics reaches mainstream oncology. Nature Med. 17, 330–339 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Chi, P., Allis, C. D. & Wang, G. G. Covalent histone modifications--miswritten, misinterpreted and mis-erased in human cancers. Nature Rev. Cancer 10, 457–469 (2010).

    Article  CAS  Google Scholar 

  74. Stresemann, C., Brueckner, B., Musch, T., Stopper, H. & Lyko, F. Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res. 66, 2794–2800 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Lyko, F. & Brown, R. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J. Natl Cancer Institute 97, 1498–1506 (2005).

    Article  CAS  Google Scholar 

  76. Spannhoff, A., Hauser, A. T., Heinke, R., Sippl, W. & Jung, M. The emerging therapeutic potential of histone methyltransferase and demethylase inhibitors. ChemMedChem 4, 1568–1582 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Tsai, H. C. et al. Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell 21, 430–446 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wagner, T. & Jung, M. New lysine methyltransferase drug targets in cancer. Nature Biotechnol. 30, 622–623 (2012).

    Article  CAS  Google Scholar 

  79. Goldberg, A. D., Allis, C. D. & Bernstein, E. Epigenetics: a landscape takes shape. Cell 128, 635–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, Y. & Reinberg, D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15, 2343–2360 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Brueckner, B., Kuck, D. & Lyko, F. DNA methyltransferase inhibitors for cancer therapy. Cancer J. 13, 17–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Yao, Y. et al. Selective inhibitors of histone methyltransferase DOT1L: design, synthesis, and crystallographic studies. J. Am. Chem. Soc. 133, 16746–16749 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Casero, R. A. Jr & Marton, L. J. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nature Rev. Drug Discov. 6, 373–390 (2007).

    Article  CAS  Google Scholar 

  84. Snell, K. Enzymes of serine metabolism in normal, developing and neoplastic rat tissues. Adv. Enzyme Regul. 22, 325–400 (1984).

    Article  CAS  PubMed  Google Scholar 

  85. Fell, D. A. & Snell, K. Control analysis of mammalian serine biosynthesis. Feedback inhibition on the final step. Biochem. J. 256, 97–101 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Snell, K., Natsumeda, Y. & Weber, G. The modulation of serine metabolism in hepatoma 3924A during different phases of cellular proliferation in culture. Biochem. J. 245, 609–612 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Snell, K. & Weber, G. Enzymic imbalance in serine metabolism in rat hepatomas. Biochem. J. 233, 617–620 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kit, S. The biosynthesis of free glycine and serine by tumors. Cancer Res. 15, 715–718 (1955).

    CAS  PubMed  Google Scholar 

  89. Locasale, J. W. & Cantley, L. C. Genetic selection for enhanced serine metabolism in cancer development. Cell Cycle 10, 3812–3813 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Locasale, J. W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nature Genet. 43, 869–874 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011). References 90 and 91 showed that de novo serine biosynthesis through PHGDH was dramatically enhanced in a subset of breast cancers and melanomas. Those with copy number gains selectively depended on PHGDH for proliferation, supporting the hypothesis that PHGDH is a candidate oncogene.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pollari, S. et al. Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res. Treat. 125, 421–430 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chaneton, B. et al. Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491, 458–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hitosugi, T. et al. Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer Cell 22, 585–600 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kung, C. et al. Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. Chem. Biol. 19, 1187–1198 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ye, J. et al. Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proc. Natl Acad. Sci. USA 109, 6904–6909 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Maddocks, O. D. et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493, 542–546 (2013). This study demonstrated the dietary requirements of serine and glycine for in vivo tumour growth, as well as the p53 dependency of cancer cells to adapt to serine and glycine deprivation.

    Article  CAS  PubMed  Google Scholar 

  99. Ma, L. et al. Control of nutrient stress-induced metabolic reprogramming by PKCzeta in tumorigenesis. Cell 152, 599–611 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang, W. C. et al. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148, 259–272 (2012). This study demonstrated that increased GLDC activity was found in a subset of tumour-initiating cells and that increased GLDC activity was sufficient to induce tumour growth in a mouse xenograft.

    Article  CAS  PubMed  Google Scholar 

  101. Wang, J., Alexander, P. & McKnight, S. L. Metabolic specialization of mouse embryonic stem cells. Cold Spring Harbor Symp. Quant. Biol. 76, 183–193 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Alexander, P. B., Wang, J. & McKnight, S. L. Targeted killing of a mammalian cell based upon its specialized metabolic state. Proc. Natl Acad. Sci. USA 108, 15828–15833 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Shyh-Chang, N. et al. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339, 222–226 (2013). This study demonstrated the ability of changes in the levels of metabolites in one-carbon metabolism to regulate the levels of histone methylation.

    Article  CAS  PubMed  Google Scholar 

  104. Ramm Sander, P. et al. Stem cell metabolic and spectroscopic profiling. Trends Biotechnol. 31, 204–213 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Sassone-Corsi, P. Physiology. When metabolism and epigenetics converge. Science 339, 148–150 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Jain, M. et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336, 1040–1044 (2012). This study carried out a metabolic flux analysis across the panel of NCI-60 cell lines. It was found that glycine uptake was the flux that most strongly correlated with cell proliferation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sreekumar, A. et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457, 910–914 (2009). This study carried out a metabolomics analysis of urine from a large cohort of patients with prostate cancer. The studies identified glycine and sarcosine as potential predictors of metastatic prostate cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Scuoppo, C. et al. A tumour suppressor network relying on the polyamine-hypusine axis. Nature 487, 244–248 (2012). This study identified genes involved in polyamine metabolism as having a tumour-suppressive role in oncogenesis. Polyamines are derived from S -adenosylmethione.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Igarashi, K. & Kashiwagi, K. Modulation of cellular function by polyamines. Int. J. Biochem. Cell Biol. 42, 39–51 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Park, M. H., Nishimura, K., Zanelli, C. F. & Valentini, S. R. Functional significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids 38, 491–500 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Saini, P., Eyler, D. E., Green, R. & Dever, T. E. Hypusine-containing protein eIF5A promotes translation elongation. Nature 459, 118–121 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lee, S. B. et al. The effect of hypusine modification on the intracellular localization of eIF5A. Biochem. Biophys. Res. Commun. 383, 497–502 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Park, M. H. The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A). J. Biochem. 139, 161–169 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Silvera, D., Formenti, S. C. & Schneider, R. J. Translational control in cancer. Nature Rev. Cancer 10, 254–266 (2010).

    Article  CAS  Google Scholar 

  115. Hoeijmakers, J. H. Genome maintenance mechanisms are critical for preventing cancer as well as other aging-associated diseases. Mech. Ageing Dev. 128, 460–462 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Hu, C. M. et al. Tumor cells require thymidylate kinase to prevent dUTP incorporation during DNA repair. Cancer Cell 22, 36–50 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Wilson, P. M., LaBonte, M. J., Lenz, H. J., Mack, P. C. & Ladner, R. D. Inhibition of dUTPase induces synthetic lethality with thymidylate synthase-targeted therapies in non-small cell lung cancer. Mol. Cancer Ther. 11, 616–628 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Stover, P. J. & Weiss, R. S. Sensitizing cancer cells: is it really all about U? Cancer Cell 22, 3–4 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bester, A. C. et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145, 435–446 (2011). This study showed that changes in the levels of nucleotide intermediates that are derived from one-carbon metabolism are sufficient to induce tumorigenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ohta, M. et al. The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell 84, 587–597 (1996). This study identified a tumour suppressor gene, FHIT , which encodes a metabolic enzyme involved in nucleotide metabolism, as being recurrently deleted in multiple cancers, including colorectal cancer.

    Article  CAS  PubMed  Google Scholar 

  122. Sozzi, G. et al. The FHIT gene 3p14.2 is abnormal in lung cancer. Cell 85, 17–26 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Pekarsky, Y., Zanesi, N., Palamarchuk, A., Huebner, K. & Croce, C. M. FHIT: from gene discovery to cancer treatment and prevention. Lancet Oncol. 3, 748–754 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Saldivar, J. C. et al. Initiation of genome instability and preneoplastic processes through loss of Fhit expression. PLoS Genet. 8, e1003077 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Siprashvili, Z. et al. Replacement of Fhit in cancer cells suppresses tumorigenicity. Proc. Natl Acad. Sci. USA 94, 13771–13776 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rahman, L. et al. Thymidylate synthase as an oncogene: a novel role for an essential DNA synthesis enzyme. Cancer Cell 5, 341–351 (2004). This study provided evidence that thymidylate synthase can function as a metabolic oncogene.

    Article  CAS  PubMed  Google Scholar 

  127. Fukushima, M., Fujioka, A., Uchida, J., Nakagawa, F. & Takechi, T. Thymidylate synthase (TS) and ribonucleotide reductase (RNR) may be involved in acquired resistance to 5-fluorouracil (5-FU) in human cancer xenografts in vivo. Eur. J. Cancer 37, 1681–1687 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Takezawa, K. et al. Identification of thymidylate synthase as a potential therapeutic target for lung cancer. Br. J. Cancer 103, 354–361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Xu, X. et al. Broad overexpression of ribonucleotide reductase genes in mice specifically induces lung neoplasms. Cancer Res. 68, 2652–2660 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bertino, J. R. & Banerjee, D. Thymidylate synthase as an oncogene? Cancer Cell 5, 301–302 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Jones, P. A. & Takai, D. The role of DNA methylation in mammalian epigenetics. Science 293, 1068–1070 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Martin, C. & Zhang, Y. The diverse functions of histone lysine methylation. Nature Rev. Mol. Cell Biol. 6, 838–849 (2005).

    Article  CAS  Google Scholar 

  134. Delhommeau, F. et al. Mutation in TET2 in myeloid cancers. New Engl. J. Med. 360, 2289–2301 (2009).

    Article  PubMed  Google Scholar 

  135. Ley, T. J. et al. DNMT3A mutations in acute myeloid leukemia. New Engl. J. Med. 363, 2424–2433 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Jones, S. et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330, 228–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ceol, C. J. et al. The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature 471, 513–517 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zee, B. M. et al. In vivo residue-specific histone methylation dynamics. J. Biol. Chem. 285, 3341–3350 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Barth, T. K. & Imhof, A. Fast signals and slow marks: the dynamics of histone modifications. Trends Biochem. Sci. 35, 618–626 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Wang, G. G., Allis, C. D. & Chi, P. Chromatin remodeling and cancer, Part I: covalent histone modifications. Trends Mol. Med. 13, 363–372 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Shaw, R. J. & Cantley, L. C. Decoding key nodes in the metabolism of cancer cells: sugar and spice and all things nice. F1000 Biol. Rep. 4, 2 (2012).

    PubMed  PubMed Central  Google Scholar 

  145. Cheong, H., Lu, C., Lindsten, T. & Thompson, C. B. Therapeutic targets in cancer cell metabolism and autophagy. Nature Biotechnol. 30, 671–678 (2012).

    Article  CAS  Google Scholar 

  146. Teicher, B. A., Linehan, W. M. & Helman, L. J. Targeting cancer metabolism. Clin. Cancer Res. 18, 5537–5545 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Dann, S. G. & Abraham, R. T. Serine biosynthesis: fuel for the melanoma cell growth engine. Pigment Cell Melanoma Res. 24, 875–877 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Trachootham, D., Alexandre, J. & Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nature Rev. Drug Discov. 8, 579–591 (2009).

    Article  CAS  Google Scholar 

  149. Inzucchi, S. E. et al. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. New Engl. J. Med. 338, 867–872 (1998).

    Article  CAS  PubMed  Google Scholar 

  150. Cabreiro, F. et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153, 228–239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Jalving, M. et al. Metformin: taking away the candy for cancer? Eur. J. Cancer 46, 2369–2380 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Pierotti, M. A. et al. Targeting metabolism for cancer treatment and prevention: metformin, an old drug with multi-faceted effects. Oncogene 32, 1475–1487 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Chong, C. R. & Chabner, B. A. Mysterious metformin. Oncol. 14, 1178–1181 (2009).

    CAS  Google Scholar 

  154. Corominas-Faja, B. et al. Metabolomic fingerprint reveals that metformin impairs one-carbon metabolism in a manner similar to the antifolate class of chemotherapy drugs. Aging 4, 480–498 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Fedirko, V. et al. Glycemic index, glycemic load, dietary carbohydrate, and dietary fiber intake and risk of liver and biliary tract cancers in Western Europeans. Ann. Oncol. 24, 543–553 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Nagle, C. M. et al. Carbohydrate intake, glycemic load, glycemic index, and risk of ovarian cancer. Ann. Oncol. 22, 1332–1338 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Patel, A. V. et al. Glycemic load, glycemic index, and carbohydrate intake in relation to pancreatic cancer risk in a large US cohort. Cancer Causes Control 18, 287–294 (2007).

    Article  PubMed  Google Scholar 

  158. Oh, K., Willett, W. C., Fuchs, C. S. & Giovannucci, E. L. Glycemic index, glycemic load, and carbohydrate intake in relation to risk of distal colorectal adenoma in women. Cancer Epidemiol. Biomarkers Prev. 13, 1192–1198 (2004).

    CAS  PubMed  Google Scholar 

  159. Ho, V. W. et al. A low carbohydrate, high protein diet slows tumor growth and prevents cancer initiation. Cancer Res. 71, 4484–4493 (2011).

    Article  CAS  PubMed  Google Scholar 

  160. Myers, A. P. & Cantley, L. C. Sugar free, cancer free? Nutrition 28, 1036 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Fine, E. J. et al. Targeting insulin inhibition as a metabolic therapy in advanced cancer: a pilot safety and feasibility dietary trial in 10 patients. Nutrition 28, 1028–1035 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Tavana, O. & Gu, W. The hunger games: p53 Regulates metabolism upon serine starvation. Cell. Metab. 17, 159–161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Shackelford, D. B. & Shaw, R. J. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nature Rev. Cancer 9, 563–575 (2009).

    Article  CAS  Google Scholar 

  164. Wu, K. et al. A prospective study on folate, B12, and pyridoxal 5′-phosphate (B6) and breast cancer. Cancer Epidemiol. Biomarkers Prev. 8, 209–217 (1999).

    CAS  PubMed  Google Scholar 

  165. Crider, K. S., Yang, T. P., Berry, R. J. & Bailey, L. B. Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate's role. Adv. Nutr. 3, 21–38 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Guerreiro, C. S. et al. Risk of colorectal cancer associated with the C677T polymorphism in 5,10-methylenetetrahydrofolate reductase in Portuguese patients depends on the intake of methyl-donor nutrients. Am. J. Clin. Nutr. 88, 1413–1418 (2008).

    CAS  PubMed  Google Scholar 

  167. Ma, J. et al. Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and risk of colorectal cancer. Cancer Res. 57, 1098–1102 (1997).

    CAS  PubMed  Google Scholar 

  168. Giovannucci, E. et al. Folate, methionine, and alcohol intake and risk of colorectal adenoma. J. Natl Cancer Institute 85, 875–884 (1993).

    Article  CAS  Google Scholar 

  169. van Engeland, M. et al. Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: the Netherlands cohort study on diet and cancer. Cancer Res. 63, 3133–3137 (2003).

    CAS  PubMed  Google Scholar 

  170. Figueiredo, J. C. et al. Folic acid and prevention of colorectal adenomas: a combined analysis of randomized clinical trials. Int. J. Cancer 129, 192–203 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ibrahim, E. M. & Zekri, J. M. Folic acid supplementation for the prevention of recurrence of colorectal adenomas: metaanalysis of interventional trials. Med. Oncol. 27, 915–918 (2010).

    Article  CAS  PubMed  Google Scholar 

  172. Logan, R. F., Grainge, M. J., Shepherd, V. C., Armitage, N. C. & Muir, K. R. Aspirin and folic acid for the prevention of recurrent colorectal adenomas. Gastroenterology 134, 29–38 (2008).

    Article  CAS  PubMed  Google Scholar 

  173. Chae, Y. K. & Yun, J. H. Folic acid and prevention of colorectal adenomas. JAMA 298, 1397 (2007).

    Article  CAS  PubMed  Google Scholar 

  174. Cole, B. F. et al. Folic acid for the prevention of colorectal adenomas: a randomized clinical trial. JAMA 297, 2351–2359 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Christensen, B. C. et al. Breast cancer DNA methylation profiles are associated with tumor size and alcohol and folate intake. PLoS Genet. 6, e1001043 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zhang, S. et al. A prospective study of folate intake and the risk of breast cancer. JAMA 281, 1632–1637 (1999).

    Article  CAS  PubMed  Google Scholar 

  177. Homocysteine Lowering Trialists' Collaboration. Lowering blood homocysteine with folic acid based supplements: meta-analysis of randomised trials. BMJ 316, 894–898 (1998).

  178. Shirota, Y. et al. ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patients receiving combination oxaliplatin and fluorouracil chemotherapy. J. Clin. Oncol. 19, 4298–4304 (2001).

    Article  CAS  PubMed  Google Scholar 

  179. Metzger, R. et al. ERCC1 mRNA levels complement thymidylate synthase mRNA levels in predicting response and survival for gastric cancer patients receiving combination cisplatin and fluorouracil chemotherapy. J. Clin. Oncol. 16, 309–316 (1998).

    Article  CAS  PubMed  Google Scholar 

  180. Edler, D. et al. Thymidylate synthase expression in colorectal cancer: a prognostic and predictive marker of benefit from adjuvant fluorouracil-based chemotherapy. J. Clin. Oncol. 20, 1721–1728 (2002).

    Article  CAS  PubMed  Google Scholar 

  181. Popat, S., Matakidou, A. & Houlston, R. S. Thymidylate synthase expression and prognosis in colorectal cancer: a systematic review and meta-analysis. J. Clin. Oncol. 22, 529–536 (2004).

    Article  CAS  PubMed  Google Scholar 

  182. Walther, A. et al. Genetic prognostic and predictive markers in colorectal cancer. Nature Rev. Cancer 9, 489–499 (2009).

    Article  CAS  Google Scholar 

  183. Dervieux, T., Greenstein, N. & Kremer, J. Pharmacogenomic and metabolic biomarkers in the folate pathway and their association with methotrexate effects during dosage escalation in rheumatoid arthritis. Arthritis Rheum. 54, 3095–3103 (2006).

    Article  CAS  PubMed  Google Scholar 

  184. Valik, D., Radina, M., Sterba, J. & Vojtesek, B. Homocysteine: exploring its potential as a pharmacodynamic biomarker of antifolate chemotherapy. Pharmacogenomics 5, 1151–1162 (2004).

    Article  CAS  PubMed  Google Scholar 

  185. Vazquez, A., Tedeschi, P. M. & Bertino, J. R. Overexpression of the mitochondrial folate and glycine-serine pathway: a new determinant of methotrexate selectivity in tumors. Cancer Res. 73, 478–482 (2013).

    Article  CAS  PubMed  Google Scholar 

  186. Jentzmik, F. et al. Sarcosine in urine after digital rectal examination fails as a marker in prostate cancer detection and identification of aggressive tumours. Eur. Urol. 58, 12–18 (2010).

    Article  CAS  PubMed  Google Scholar 

  187. Ploussard, G. & de la Taille, A. Urine biomarkers in prostate cancer. Nature Rev. Urol. 7, 101–109 (2010).

    Article  CAS  Google Scholar 

  188. Couzin, J. Biomarkers. Metabolite in urine may point to high-risk prostate cancer. Science 323, 865 (2009).

    Article  CAS  PubMed  Google Scholar 

  189. Glunde, K., Bhujwalla, Z. M. & Ronen, S. M. Choline metabolism in malignant transformation. Nature Rev. Cancer 11, 835–848 (2011).

    Article  CAS  Google Scholar 

  190. Aboagye, E. O. & Bhujwalla, Z. M. Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Res. 59, 80–84 (1999).

    CAS  PubMed  Google Scholar 

  191. Hara, T., Kosaka, N. & Kishi, H. PET imaging of prostate cancer using carbon-11-choline. J. Nucl. Med. 39, 990–995 (1998).

    CAS  PubMed  Google Scholar 

  192. Reske, S. N. et al. Imaging prostate cancer with 11C-choline PET/CT. J. Nucl. Med. 47, 1249–1254 (2006).

    CAS  PubMed  Google Scholar 

  193. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. New Engl. J. Med. 351, 2817–2826 (2004).

    Article  CAS  PubMed  Google Scholar 

  194. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Losman, J. A. & Kaelin, W. G. Jr. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 27, 836–852 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kaelin, W. G. Jr & McKnight, S. L. Influence of metabolism on epigenetics and disease. Cell 153, 56–69 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Chu, E. Ode to 5-Fluorouracil. Clin. Colorectal Cancer 6, 609 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to members of his laboratory for helpful discussions. He also thanks L. Cantley for stimulating conversations in this area and the anonymous reviewers for their helpful comments. The work was supported through funding from the American Cancer Society and the US National Cancer Institute (CA168997).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason W. Locasale.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

PowerPoint slides

Glossary

Aldol cleavage

A chemical reaction that can be catalysed enzymatically resulting in the splitting of a β-hydroxy ketone.

NCI-60

A panel of tumour-derived cell lines originating from diverse tissue types. Extensive genomic, biochemical and pharmacological data have been obtained on these cell lines.

Therapeutic window

A term used in drug development and medical practice that refers to ranges of drug concentrations that satisfy the trade-off between an efficacious clinical response and unwanted toxicities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Locasale, J. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13, 572–583 (2013). https://doi.org/10.1038/nrc3557

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3557

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer