Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol Update
  • Published:

Chemically induced mouse models of acute and chronic intestinal inflammation

Abstract

Inflammatory bowel diseases (IBDs) result in diarrhea and abdominal pain with further potential complications such as tissue fibrosis and stenosis. Animal models help in understanding the immunopathogenesis of IBDs and in the design of novel therapeutic concepts. Here we present an updated version of a protocol we published in 2007 for key models of acute and chronic forms of colitis induced by 2,4,6-trinitro-benzene sulfonic acid (TNBS), oxazolone and dextran sulfate sodium (DSS). This protocol update describes an adaptation of the existing protocol that modifies the technique. This protocol has been used to generate improved mouse models that better reflect the nature of IBDs in humans. In TNBS and oxazolone colitis models, topical administration of hapten reagents results in T-cell-mediated immunity against haptenized proteins and luminal antigens. By contrast, to generate DSS colitis models, mice orally receive DSS, causing death of epithelial cells, compromising barrier function and causing subsequent inflammation. The analysis of the acute colitis models can be performed within 1–2 weeks, whereas that of the chronic models may take 2–4 months. The strengths of the acute models are that they are based on the analysis of short-lasting barrier alterations, innate immune effects and flares. The advantages of the chronic models are that they may offer better insight into adaptive immunity and complications such as neoplasia and tissue fibrosis. The protocol requires basic skills in laboratory animal research.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of the models whose setup is described in Step 1.
Figure 2: Equalization of the microbiome by cohousing.
Figure 3: Mouse small intestine, large intestine, cecum and mesentery.
Figure 4: Typical results obtained after acute TNBS or oxazolone colitis induction.
Figure 5: Typical results obtained after the chronic TNBS colitis protocol.
Figure 6: Typical results obtained after the chronic oxazolone colitis protocol.
Figure 7: Typical results obtained after the DSS colitis protocol.

Similar content being viewed by others

References

  1. Danese, S. & Fiocchi, C. Ulcerative colitis. N. Engl. J. Med. 365, 1713–1725 (2011).

    Article  CAS  Google Scholar 

  2. Baumgart, D.C. & Sandborn, W.J. Crohn's disease. Lancet 380, 1590–1605 (2012).

    Article  Google Scholar 

  3. Neurath, M.F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 14, 329–342 (2014).

    Article  CAS  Google Scholar 

  4. Wirtz, S. & Neurath, M.F. Mouse models of inflammatory bowel disease. Adv. Drug Deliv. Rev. 59, 1073–1083 (2007).

    Article  CAS  Google Scholar 

  5. Saleh, M. & Elson, C.O. Experimental inflammatory bowel disease: insights into the host-microbiota dialog. Immunity 34, 293–302 (2011).

    Article  CAS  Google Scholar 

  6. Strober, W., Fuss, I.J. & Blumberg, R.S. The immunology of mucosal models of inflammation. Annu. Rev. Immunol. 20, 495–549 (2002).

    Article  CAS  Google Scholar 

  7. Lopez-Posadas, R. et al. Rho-A prenylation and signaling link epithelial homeostasis to intestinal inflammation. J. Clin. Invest. 126, 611–626 (2016).

    Article  Google Scholar 

  8. Perse, M. & Cerar, A. Dextran sodium sulphate colitis mouse model: traps and tricks. J. Biomed. Biotechnol. 2012, 718617 (2012).

    Article  Google Scholar 

  9. Elson, C.O. et al. Hapten-induced model of murine inflammatory bowel disease: mucosa immune responses and protection by tolerance. J. Immunol. 157, 2174–2185 (1996).

    CAS  PubMed  Google Scholar 

  10. Fiorucci, S. et al. Importance of innate immunity and collagen binding integrin α1β1 in TNBS-induced colitis. Immunity 17, 769–780 (2002).

    Article  CAS  Google Scholar 

  11. Neurath, M.F., Fuss, I., Kelsall, B.L., Stuber, E. & Strober, W. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J. Exp. Med. 182, 1281–1290 (1995).

    Article  CAS  Google Scholar 

  12. Dohi, T. et al. Hapten-induced colitis is associated with colonic patch hypertrophy and T helper cell 2-type responses. J. Exp. Med. 189, 1169–1180 (1999).

    Article  CAS  Google Scholar 

  13. Kiesler, P., Fuss, I.J. & Strober, W. Experimental models of inflammatory bowel diseases. Cell. Mol. Gastroenterol. Hepatol. 1, 154–170 (2015).

    Article  Google Scholar 

  14. Rieder, F., Zimmermann, E.M., Remzi, F.H. & Sandborn, W.J. Crohn's disease complicated by strictures: a systematic review. Gut 62, 1072–1084 (2013).

    Article  CAS  Google Scholar 

  15. Fichtner-Feigl, S. et al. Induction of IL-13 triggers TGF-β1-dependent tissue fibrosis in chronic 2,4,6-trinitrobenzene sulfonic acid colitis. J. Immunol. 178, 5859–5870 (2007).

    Article  CAS  Google Scholar 

  16. Boirivant, M., Fuss, I.J., Chu, A. & Strober, W. Oxazolone colitis: a murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J. Exp. Med. 188, 1929–1939 (1998).

    Article  CAS  Google Scholar 

  17. Heller, F., Fuss, I.J., Nieuwenhuis, E.E., Blumberg, R.S. & Strober, W. Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 17, 629–638 (2002).

    Article  CAS  Google Scholar 

  18. Gerlach, K. et al. TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat. Immunol. 15, 676–686 (2014).

    Article  CAS  Google Scholar 

  19. Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).

    Article  CAS  Google Scholar 

  20. Hoving, J.C. et al. B cells that produce immunoglobulin E mediate colitis in BALB/c mice. Gastroenterology 142, 96–108 (2012).

    Article  CAS  Google Scholar 

  21. Okayasu, I. et al. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98, 694–702 (1990).

    Article  CAS  Google Scholar 

  22. Laroui, H. et al. Dextran sodium sulfate (DSS) induces colitis in mice by forming nano-lipocomplexes with medium-chain-length fatty acids in the colon. PLoS One 7, e32084 (2012).

    Article  CAS  Google Scholar 

  23. Hernandez-Chirlaque, C. et al. Germ-free and antibiotic-treated mice are highly susceptible to epithelial injury in DSS colitis. J. Crohns Colitis 10, 1324–1335 (2016).

    Article  Google Scholar 

  24. Hudcovic, T., Stepankova, R., Cebra, J. & Tlaskalova-Hogenova, H. The role of microflora in the development of intestinal inflammation: acute and chronic colitis induced by dextran sulfate in germ-free and conventionally reared immunocompetent and immunodeficient mice. Folia Microbiol. 46, 565–572 (2001).

    Article  CAS  Google Scholar 

  25. Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757 (2011).

    Article  CAS  Google Scholar 

  26. Dieleman, L.A. et al. Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology 107, 1643–1652 (1994).

    Article  CAS  Google Scholar 

  27. Krieglstein, C.F. et al. Collagen-binding integrin α1β1 regulates intestinal inflammation in experimental colitis. J. Clin. Invest. 110, 1773–1782 (2002).

    Article  CAS  Google Scholar 

  28. Dieleman, L.A. et al. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin. Exp. Immunol. 114, 385–391 (1998).

    Article  CAS  Google Scholar 

  29. Rosen, M.J. et al. Mucosal expression of type 2 and type 17 immune response genes distinguishes ulcerative colitis from colon-only Crohn's disease in treatment-naive pediatric patients. Gastroenterology 152, 1345–1357 (2017).

    Article  CAS  Google Scholar 

  30. Reinisch, W. et al. Anrukinzumab, an anti-interleukin 13 monoclonal antibody, in active UC: efficacy and safety from a phase IIa randomised multicentre study. Gut 64, 894–900 (2015).

    Article  CAS  Google Scholar 

  31. Danese, S. et al. Tralokinumab for moderate-to-severe UC: a randomised, double-blind, placebo-controlled, phase IIa study. Gut 64, 243–249 (2015).

    Article  CAS  Google Scholar 

  32. Engelhardt, K.R. & Grimbacher, B. IL-10 in humans: lessons from the gut, IL-10/IL-10 receptor deficiencies, and IL-10 polymorphisms. Curr. Top. Microbiol. Immunol. 380, 1–18 (2014).

    CAS  PubMed  Google Scholar 

  33. Kontoyiannis, D., Pasparakis, M., Pizarro, T.T., Cominelli, F. & Kollias, G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10, 387–398 (1999).

    Article  CAS  Google Scholar 

  34. Pizarro, T.T. et al. SAMP1/YitFc mouse strain: a spontaneous model of Crohn's disease-like ileitis. Inflamm. Bowel Dis. 17, 2566–2584 (2011).

    Article  Google Scholar 

  35. Wirtz, S., Neufert, C., Weigmann, B. & Neurath, M.F. Chemically induced mouse models of intestinal inflammation. Nat. Protoc. 2, 541–546 (2007).

    Article  CAS  Google Scholar 

  36. Mahler, M. et al. Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis. Am. J. Physiol. 274, G544–G551 (1998).

    CAS  PubMed  Google Scholar 

  37. Bleich, A. & Fox, J.G. The mammalian microbiome and its importance in laboratory animal research. ILAR J. 56, 153–158 (2015).

    Article  CAS  Google Scholar 

  38. Laukens, D., Brinkman, B.M., Raes, J., De Vos, M. & Vandenabeele, P. Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiol. Rev. 40, 117–132 (2016).

    Article  CAS  Google Scholar 

  39. Podolsky, D.K., Gerken, G., Eyking, A. & Cario, E. Colitis-associated variant of TLR2 causes impaired mucosal repair because of TFF3 deficiency. Gastroenterology 137, 209–220 (2009).

    Article  CAS  Google Scholar 

  40. Kilkenny, C., Browne, W.J., Cuthill, I.C., Emerson, M. & Altman, D.G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010).

    Article  Google Scholar 

  41. Becker, C. et al. In vivo imaging of colitis and colon cancer development in mice using high resolution chromoendoscopy. Gut 54, 950–954 (2005).

    Article  CAS  Google Scholar 

  42. Vowinkel, T., Kalogeris, T.J., Mori, M., Krieglstein, C.F. & Granger, D.N. Impact of dextran sulfate sodium load on the severity of inflammation in experimental colitis. Dig. Dis. Sci. 49, 556–564 (2004).

    Article  CAS  Google Scholar 

  43. Tseng, J.C. & Kung, A.L. In vivo imaging of inflammatory phagocytes. Chem. Biol. 19, 1199–1209 (2012).

    Article  CAS  Google Scholar 

  44. Van den Broeck, W., Derore, A. & Simoens, P. Anatomy and nomenclature of murine lymph nodes: descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. J. Immunol. Methods 312, 12–19 (2006).

    Article  CAS  Google Scholar 

  45. Strober, W. Appendix 3B Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. http://dx.doi.org/10.1002/0471142735.ima03bs21 (2001).

  46. Yu, Y.R. et al. A protocol for the comprehensive flow cytometric analysis of immune cells in normal and inflamed murine non-lymphoid tissues. PLoS One 11, e0150606 (2016).

    Article  Google Scholar 

  47. Amsen, D., de Visser, K.E. & Town, T. Approaches to determine expression of inflammatory cytokines. Methods Mol. Biol. 511, 107–142 (2009).

    Article  CAS  Google Scholar 

  48. Moolenbeek, C. & Ruitenberg, E.J. The 'Swiss roll': a simple technique for histological studies of the rodent intestine. Lab. Anim. 15, 57–59 (1981).

    Article  CAS  Google Scholar 

  49. Cardiff, R.D., Miller, C.H. & Munn, R.J. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb. Protoc. 2014, 655–658 (2014).

    PubMed  Google Scholar 

  50. Wirtz, S., Billmeier, U., McHedlidze, T., Blumberg, R.S. & Neurath, M.F. Interleukin-35 mediates mucosal immune responses that protect against T-cell-dependent colitis. Gastroenterology 141, 1875–1886 (2011).

    Article  CAS  Google Scholar 

  51. Becker, C., Fantini, M.C. & Neurath, M.F. High resolution colonoscopy in live mice. Nat. Protoc. 1, 2900–2904 (2006).

    Article  CAS  Google Scholar 

  52. Erben, U. et al. A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int. J. Clin. Exp. Pathol. 7, 4557–4576 (2014).

    PubMed  PubMed Central  Google Scholar 

  53. Pfeiffer, C.J. & Qiu, B.S. Effects of chronic nitric oxide synthase inhibition on TNB-induced colitis in rats. J. Pharm. Pharmacol. 47, 827–832 (1995).

    Article  CAS  Google Scholar 

  54. Weigmann, B. et al. Isolation and subsequent analysis of murine lamina propria mononuclear cells from colonic tissue. Nat. Protoc. 2, 2307–2311 (2007).

    Article  CAS  Google Scholar 

  55. Edgar, R.C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    Article  CAS  Google Scholar 

  56. Huse, S.M. et al. VAMPS: a website for visualization and analysis of microbial population structures. BMC Bioinformatics 15, 41 (2014).

    Article  Google Scholar 

  57. Cooper, H.S., Murthy, S.N., Shah, R.S. & Sedergran, D.J. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab. Invest. 69, 238–249 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research leading to the provided results received funding from German Research Foundation (DFG) projects SPP1656, and SFB796, SFB1181-A08, as well as clinical research units KFO257 and FOR2438. Further support was given by the Interdisciplinary Center for Clinical Research (IZKF) of the University Erlangen–Nuremberg (to S.W.).

Author information

Authors and Affiliations

Authors

Contributions

S.W., K.G., M.K., B.W. and V.P. performed the experiments. S.W., S.F.-F. and M.F.N. designed the studies and wrote the paper.

Corresponding author

Correspondence to Markus F Neurath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wirtz, S., Popp, V., Kindermann, M. et al. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat Protoc 12, 1295–1309 (2017). https://doi.org/10.1038/nprot.2017.044

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.044

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing