Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Studying synapses in human brain with array tomography and electron microscopy

Abstract

Postmortem studies of synapses in human brain are problematic because of the axial resolution limit of light microscopy and the difficulty in preserving and analyzing ultrastructure with electron microscopy (EM). Array tomography (AT) overcomes these problems by embedding autopsy tissue in resin and cutting ribbons of ultrathin serial sections. Ribbons are imaged with immunofluorescence, allowing high-throughput imaging of tens of thousands of synapses to assess synapse density and protein composition. The protocol takes 3 d per case, excluding image analysis, which is done at the end of the study. Parallel processing for transmission electron microscopy (TEM) using a protocol modified to preserve the structure in human samples allows complementary ultrastructural studies. Incorporation of AT and TEM into brain banking is a potent way of phenotyping synapses in well-characterized clinical cohorts in order to develop clinicopathological correlations at the synapse level. This will be important for research in neurodegenerative disease, developmental disease and psychiatric illness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principles of array tomography.
Figure 2
Figure 3: Regions collected for neurodegenerative disease studies.
Figure 4: Small 1-cm3 samples from multiple brain regions are bisected, with one-half dropped into AT fixative.
Figure 5: Imaging array tomography ribbons.
Figure 6: Image analysis.
Figure 7: Examples of AT imaging.
Figure 8: Examples of EM imaging of healthy and degenerating human synapses.

Similar content being viewed by others

References

  1. Morrison, J.H. & Baxter, M.G. The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat. Rev. Neurosci. 13, 240–250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Koffie, R.M., Hyman, B.T. & Spires-Jones, T.L. Alzheimer′s disease: synapses gone cold. Mol. Neurodegener. 6, 63 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mayhew, T.M. How to count synapses unbiasedly and efficiently at the ultrastructural level: proposal for a standard sampling and counting protocol. J. Neurocytol. 25, 793–804 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Mayhew, T.M., Muhlfeld, C., Vanhecke, D. & Ochs, M. A review of recent methods for efficiently quantifying immunogold and other nanoparticles using TEM sections through cells, tissues and organs. Ann. Anat. 191, 153–170 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Scheff, S.W., Price, D.A. & Sparks, D.L. Quantitative assessment of possible age-related change in synaptic numbers in the human frontal cortex. Neurobiol. Aging 22, 355–365 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Pawley, J.B. Handbook of Biological Confocal Microscopy (Springer, 2006).

  7. Holtmaat, A. et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat. Protoc. 4, 1128–1144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuchibhotla, K.V. et al. Aβ plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 59, 214–225 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wakabayashi, K., Honer, W. & Masliah, E. Synapse alterations in the hippocampal-entorhinal formation in Alzheimer′s disease with and without Lewy body disease. Brain Res. 667, 24–32 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Moore, D. et al. Cortical and subcortical neurodegeneration is associated with HIV neurocognitive impairment. AIDS 20, 879–887 (2006).

    Article  PubMed  Google Scholar 

  11. DeKosky, S., Scheff, S. & Styren, S. Structural correlates of cognition in dementia: quantification and assessment of synapse change. Neurodegeneration 5, 417–421 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Masliah, E., Terry, R., Alford, M., DeTeresa, R. & Hansen, L. Cortical and subcortical patterns of synaptophysinlike immunoreactivity in Alzheimer′s disease. Am. J. Pathol. 138, 235–246 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Clare, R., King, V., Wirenfeldt, M. & Vinters, H. Synapse loss in dementias. J. Neurosci. Res. 88, 2083–2090 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tai, H.-C. et al. The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. Am. J. Pathol. 181, 1426–1435 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Micheva, K.D. & Smith, S.J. Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55, 25–36 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Micheva, K.D., Busse, B., Weiler, N.C., O′Rourke, N. & Smith, S.J. Single-synapse analysis of a diverse synapse population: proteomic imaging methods and markers. Neuron 68, 639–653 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Koffie, R.M. et al. Oligomeric amyloid-β associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc. Natl. Acad. Sci. USA 106, 4012–4017 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Koffie, R.M. et al. Apolipoprotein E4 effects in Alzheimer′s disease are mediated by synaptotoxic oligomeric amyloid-β. Brain 135, 2155–2168 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kopeikina, K.J. et al. Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human AD brain. Am. J. Pathol. 179, 2071–2082 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Soiza-Reilly, M. & Commons, K.G. Quantitative analysis of glutamatergic innervation of the mouse dorsal raphe nucleus using array tomography. J. Comp. Neurol. 519, 3802–3814 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nanguneri, S., Flottmann, B., Horstmann, H., Heilemann, M. & Kuner, T. Three-dimensional, tomographic super-resolution fluorescence imaging of serially sectioned thick samples. PLoS ONE 7, e38098 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kopeikina, K.J. et al. Synaptic alterations in the rTg4510 mouse model of tauopathy. J. Comp. Neurol. 521, 1334–1353 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. de Calignon, A. et al. Propagation of tau pathology in a model of early Alzheimer′s disease. Neuron 73, 685–697 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lacey, C.J., Bryant, A., Brill, J. & Huguenard, J.R. Enhanced NMDA receptor-dependent thalamic excitation and network oscillations in stargazer mice. J. Neurosci. 32, 11067–11081 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oberti, D., Kirschmann, M.A. & Hahnloser, R.H. Projection neuron circuits resolved using correlative array tomography. Front Neurosci. 5, 50 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Oberti, D., Kirschmann, M.A. & Hahnloser, R.H. Correlative microscopy of densely labeled projection neurons using neural tracers. Front Neuroanat. 4, 24 (2010).

    PubMed  PubMed Central  Google Scholar 

  27. Robles, E., Smith, S.J. & Baier, H. Characterization of genetically targeted neuron types in the zebrafish optic tectum. Front Neural Circuits 5, 1 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Saatchi, S. et al. Three-dimensional microstructural changes in murine abdominal aortic aneurysms quantified using immunofluorescent array tomography. J. Histochem. Cytochem. 60, 97–109 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Winkler, M. et al. High resolution three-dimensional reconstruction of the collagenous matrix of the human optic nerve head. Brain Res. Bull. 81, 339–348 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Vonsattel, J. et al. An improved approach to prepare human brains for research. J. Neuropathol. Exp. Neurol. 54, 42–56 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Wright, A.K., Wishart, T.M., Ingham, C.A. & Gillingwater, T.H. Synaptic protection in the brain of WldS mice occurs independently of age but is sensitive to gene-dose. PLoS ONE 5, e15108 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Freeberg, T.M. & Lucas, J.R. Pseudoreplication is (still) a problem. J. Comp. Psychol. 123, 450–451 (2009).

    Article  PubMed  Google Scholar 

  33. Rudinskiy, N. et al. Orchestrated experience-driven Arc responses are disrupted in a mouse model of Alzheimer′s disease. Nat. Neurosci. 15, 1422–1429 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thevenaz, P., Ruttimann, U.E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 7, 27–41 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Koch, S. et al. Morphologic and functional correlates of synaptic pathology in the cathepsin D knockout mouse model of congenital neuronal ceroid lipofuscinosis. J. Neuropathol. Exp. Neurol. 70, 1089–1096 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Gillingwater, T. et al. Delayed synaptic degeneration in the CNS of WldS mice after cortical lesion. Brain 129, 1546–1556 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the patients and their families for their generous donations. We also thank K. Micheva and S. Smith for training us in the AT technique; D. Selkoe (Harvard Medical School), V. Lee (University of Pennsylvania) and D. Walsh (Harvard Medical School) for antibodies; and K. Kuchibhotla and S. Raymond for MATLAB programming. Harvard Catalyst supplied biostatistical support. This work was supported by US National Institutes of Health (NIH) grants R00AG033670 (T.L.S.-J., K.R.K.), T32AG000277 (K.J.K., B.T.H.), P50AG05134 (B.T.H., A.S.-P., M.P.F.); Alzheimer's Research UK (A.M.P.), the Sylvia Aitken Charitable Trust (C.S., A.K.W., M.E.B., T.H.B., S.A., T.H.G.) and the Medical Research Council UK G110616 (C.S.).

Author information

Authors and Affiliations

Authors

Contributions

K.R.K., T.L.S.-J., A.S.-P., A.M.P., R.K. and K.J.K. performed AT experiments. C.S. and M.P.F. consulted on neuropathology. K.R.K. C.S., D.M., A.S.-P., R.K. and T.L.S.-J. collected human brain tissue. A.K.W., M.E.B., T.H.B., S.A. and T.H.G. designed and performed electron microscopy experiments. K.R.K., A.S.-P., A.M.P., K.J.K., C.S., T.H.G., B.T.H. and T.L.S.-J. discussed the data and prepared the manuscript.

Corresponding author

Correspondence to Tara L Spires-Jones.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Example of stripping and re-probing array ribbons. (PDF 1719 kb)

Supplementary Table 1

Characteristics of human subjects used. (PDF 489 kb)

Supplementary Video 1

Demonstration of making AT blocks from fresh tissue. (MOV 10955 kb)

Supplementary Methods

Instructions for automated imaging of AT ribbons with AxioVision macros. (PDF 527 kb)

Supplementary Data 1

ImageJ macro examples for AT analysis. (PDF 512 kb)

Supplementary Data 2

MATLAB script for colocalization analysis of AT images. (PDF 489 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kay, K., Smith, C., Wright, A. et al. Studying synapses in human brain with array tomography and electron microscopy. Nat Protoc 8, 1366–1380 (2013). https://doi.org/10.1038/nprot.2013.078

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.078

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing