Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton

Abstract

By combining astigmatism imaging with a dual-objective scheme, we improved the image resolution of stochastic optical reconstruction microscopy (STORM) and obtained <10-nm lateral resolution and <20-nm axial resolution when imaging biological specimens. Using this approach, we resolved individual actin filaments in cells and revealed three-dimensional ultrastructure of the actin cytoskeleton. We observed two vertically separated layers of actin networks with distinct structural organizations in sheet-like cell protrusions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup and spatial resolution of dual-objective 3D STORM.
Figure 2: Dual-objective 3D STORM resolves individual actin filaments in cells.
Figure 3: Sheet-like cell protrusion comprises two layers of actin networks with distinct structures.

Similar content being viewed by others

References

  1. Hell, S.W. Science 316, 1153–1158 (2007).

    Article  CAS  Google Scholar 

  2. Huang, B., Babcock, H. & Zhuang, X.W. Cell 143, 1047–1058 (2010).

    Article  CAS  Google Scholar 

  3. Betzig, E. et al. Science 313, 1642–1645 (2006).

    Article  CAS  Google Scholar 

  4. Gould, T.J. et al. Nat. Methods 5, 1027–1030 (2008).

    Article  CAS  Google Scholar 

  5. Heilemann, M. et al. Angew. Chem. Int. Ed. 47, 6172–6176 (2008).

    Article  CAS  Google Scholar 

  6. Vogelsang, J., Cordes, T., Forthmann, C., Steinhauer, C. & Tinnefeld, P. Proc. Natl. Acad. Sci. USA 106, 8107–8112 (2009).

    Article  CAS  Google Scholar 

  7. Chhabra, E.S. & Higgs, H.N. Nat. Cell Biol. 9, 1110–1121 (2007).

    Article  CAS  Google Scholar 

  8. Pollard, T.D. & Borisy, G.G. Cell 112, 453–465 (2003).

    Article  CAS  Google Scholar 

  9. Svitkina, T. Methods Cell Biol. 79, 295–319 (2007).

    Article  CAS  Google Scholar 

  10. Urban, E., Jacob, S., Nemethova, M., Resch, G.P. & Small, J.V. Nat. Cell Biol. 12, 429–435 (2010).

    Article  CAS  Google Scholar 

  11. Rust, M.J., Bates, M. & Zhuang, X.W. Nat. Methods 3, 793–795 (2006).

    Article  CAS  Google Scholar 

  12. Huang, B., Wang, W.Q., Bates, M. & Zhuang, X.W. Science 319, 810–813 (2008).

    Article  CAS  Google Scholar 

  13. Shtengel, G. et al. Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).

    Article  CAS  Google Scholar 

  14. Aquino, D. et al. Nat. Methods 8, 353–359 (2011).

    Article  CAS  Google Scholar 

  15. Zhuang, X.W. Nat. Photonics 3, 365–367 (2009).

    Article  CAS  Google Scholar 

  16. Pellegrin, S. & Mellor, H. J. Cell Sci. 120, 3491–3499 (2007).

    Article  CAS  Google Scholar 

  17. Geiger, B., Spatz, J.P. & Bershadsky, A.D. Nat. Rev. Mol. Cell Biol. 10, 21–33 (2009).

    Article  CAS  Google Scholar 

  18. Svitkina, T.M. & Borisy, G.G. J. Cell Biol. 145, 1009–1026 (1999).

    Article  CAS  Google Scholar 

  19. Giannone, G. et al. Cell 128, 561–575 (2007).

    Article  CAS  Google Scholar 

  20. Small, J.V., Rottner, K., Hahne, P. & Anderson, K.I. Microsc. Res. Tech. 47, 3–17 (1999).

    Article  CAS  Google Scholar 

  21. Koestler, S.A., Auinger, S., Vinzenz, M., Rottner, K. & Small, J.V. Nat. Cell Biol. 10, 306–313 (2008).

    Article  CAS  Google Scholar 

  22. Auinger, S. & Small, J.V. Methods Cell Biol. 88, 257–272 (2008).

    Article  CAS  Google Scholar 

  23. Dempsey, G.T. et al. J. Am. Chem. Soc. 131, 18192–18193 (2009).

    Article  CAS  Google Scholar 

  24. Goshtasby, A. 2-D and 3-D Image Registration for Medical, Remote Sensing, and Industrial Applications (Wiley, 2005).

Download references

Acknowledgements

We thank G. Danuser for helpful discussion. This work was supported in part by the US National Institutes of Health and a Collaborative Innovation Award (43667) from Howard Hughes Medical Institute and Gatsby Charitable Foundation (to X.Z.). X.Z. is funded by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

K.X., H.P.B. and X.Z. designed research. K.X. did experiments and data analysis. H.P.B. assisted with the optical setup. K.X. and X.Z. prepared the manuscript. X.Z. supervised the project.

Corresponding author

Correspondence to Xiaowei Zhuang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Results, Supplementary Discussion and Supplementary Protocols 1–2 (PDF 23681 kb)

Supplementary Software

Analysis software (ZIP 4 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, K., Babcock, H. & Zhuang, X. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat Methods 9, 185–188 (2012). https://doi.org/10.1038/nmeth.1841

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1841

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing