Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A toolkit for high-throughput, cross-species gene engineering in Drosophila

Abstract

We generated two complementary genomic fosmid libraries for Drosophila melanogaster and Drosophila pseudoobscura that permit seamless modification of large genomic clones by high-throughput recombineering and direct transgenesis. The fosmid transgenes recapitulated endogenous gene expression patterns. These libraries, in combination with recombineering technology, will be useful to rescue mutant phenotypes, allow imaging of gene products in living flies and enable systematic analysis and manipulation of gene activity across species.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genomic fosmid libraries.
Figure 2: Tagged fosmid clones recapitulate wild-type gene expression patterns.

Similar content being viewed by others

References

  1. Groth, A.C., Fish, M., Nusse, R. & Calos, M.P. Genetics 166, 1775–1782 (2004).

    Article  CAS  Google Scholar 

  2. Venken, K.J., He, Y., Hoskins, R.A. & Bellen, H.J. Science 314, 1747–1751 (2006).

  3. Sarov, M. et al. Nat. Methods 3, 839–844 (2006).

    Article  CAS  Google Scholar 

  4. Poser, I. et al. Nat. Methods 5, 409–415 (2008).

    Article  CAS  Google Scholar 

  5. Venken, K.J. et al. Nucleic Acids Res. 36, e114 (2008).

    Article  Google Scholar 

  6. Berghammer, A.J., Klingler, M. & Wimmer, E.A. Nature 402, 370–371 (1999).

    Article  CAS  Google Scholar 

  7. Bird, A.W. & Hyman, A.A. J. Cell Biol. 182, 289–300 (2008).

    Article  CAS  Google Scholar 

  8. Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E.H. Science 305, 1007–1009 (2004).

    Article  CAS  Google Scholar 

  9. Horn, C. & Wimmer, E.A. Dev. Genes Evol. 210, 630–637 (2000).

    Article  CAS  Google Scholar 

  10. Venken, K.J. et al. Science 314, 1747–1751 (2006).

    Article  CAS  Google Scholar 

  11. Berghammer, A.J., Klingler, M. & Wimmer, E.A. Nature 402, 370–371 (1999).

    Article  CAS  Google Scholar 

  12. Sarov, M. et al. Nat. Methods 3, 839–844 (2006).

    Article  CAS  Google Scholar 

  13. Poser, I. et al. Nat. Methods 5, 409–415 (2008).

    Article  CAS  Google Scholar 

  14. Zhang, Y. et al. Nat. Genet. 20, 123–128 (1998).

    Article  CAS  Google Scholar 

  15. Tomancak, P. et al. Genome Biol. 8, R145 (2007).

    Article  Google Scholar 

  16. Markstein, M. et al. Nat. Genet. 40, 476–483 (2008).

    Article  CAS  Google Scholar 

  17. Groth, A.C. et al. Genetics 166, 1775–1782 (2004).

    Article  CAS  Google Scholar 

  18. Bischof, J. et al. Proc. Natl. Acad. Sci. USA 104, 3312–3317 (2007).

    Article  CAS  Google Scholar 

  19. Tomancak, P. et al. Genome Biol. 3, 0088 (2002).

    Article  Google Scholar 

  20. Huisken, J. et al. Rererer. Science 305, 1007–1009 (2004).

    Article  CAS  Google Scholar 

  21. Preibisch, S. et al. In SPIE Medical Imaging 2009: Image Processing (J.P.W. Pluim & B.M. Dawant, eds.) 7259, 72592S (2009).

    Book  Google Scholar 

Download references

Acknowledgements

We thank Z. Maliga, E. Knust and C. Bökel for critical reading of the manuscript, S. Preibisch and D. White for three-dimensional reconstructions of multiview images, and P. Mejstrik for technical help. R.K.E. was supported by Dresden International Graduate School for Biomedicine and Bioengineering PhD stipend.

Author information

Authors and Affiliations

Authors

Contributions

R.K.E. did the majority of the work presented in this manuscript. M.S. performed the high-throughput recombineering experiments. S.W. set up the fosmid sequencing protocol. K.A.L. generated the D. pseudoobscura library. P.T. conceived the whole project and wrote the manuscript.

Corresponding author

Correspondence to Pavel Tomancak.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–4, Supplementary Protocols 1–3 (PDF 1125 kb)

Supplementary Video 1

3D rendering of an embryo expressing FlyFos (CG4702-GFP) imaged by SPIM. (MOV 1441 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ejsmont, R., Sarov, M., Winkler, S. et al. A toolkit for high-throughput, cross-species gene engineering in Drosophila. Nat Methods 6, 435–437 (2009). https://doi.org/10.1038/nmeth.1334

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1334

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing