Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolution of gene expression in the Drosophila melanogaster subgroup

Abstract

Little is known about broad patterns of variation and evolution of gene expression during any developmental process. Here we investigate variation in genome-wide gene expression among Drosophila simulans, Drosophila yakuba and four strains of Drosophila melanogaster during a major developmental transition—the start of metamorphosis. Differences in gene activity between these lineages follow a phylogenetic pattern, and 27% of all of the genes in these genomes differ in their developmental gene expression between at least two strains or species. We identify, on a gene-by-gene basis, the evolutionary forces that shape this variation and show that, both within the transcriptional network that controls metamorphosis and across the whole genome, the expression changes of transcription factor genes are relatively stable, whereas those of their downstream targets are more likely to have evolved. Our results demonstrate extensive evolution of developmental gene expression among closely related species.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Developmental and evolutionary patterns of gene expression.
Figure 2: Evolutionary modes.
Figure 3: Evolutionary modes of the ecdysone-regulated genes.

Similar content being viewed by others

References

  1. King, M.C. & Wilson, A.C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975).

    Article  CAS  Google Scholar 

  2. Davidson, E.H. Genomic Regulatory Systems: Development and Evolution (Academic, San Diego, 2001).

  3. Johnson, N.A. & Porter, A.H. Toward a new synthesis: population genetics and evolutionary developmental biology. Genetica 112, 45–58 (2001).

    Article  Google Scholar 

  4. Wilkins, A.S. The Evolution of Developmental Pathways (Sinauer, New York, 2001).

    Google Scholar 

  5. Dickinson, W.J. On the architecture of regulatory systems—evolutionary insights and implications. BioEssays 8, 204–208 (1988).

    Article  CAS  Google Scholar 

  6. Wagner, G.P. Homologues, natural kinds and the evolution of modularity. Am. Zool. 36, 36–43 (1996).

    Article  Google Scholar 

  7. Dickinson, W.J., Yang, Y.F., Schuske, K. & Akam, M. Conservation of molecular prepatterns during the evolution of cuticle morphology in Drosophila larvae. Evolution 47, 1396–1406 (1993).

    Article  CAS  Google Scholar 

  8. McGinnis, W., Garber, R.L., Wirz, J., Kuroiwa, A. & Gehring, W.J. A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 37, 403–408 (1984).

    Article  CAS  Google Scholar 

  9. Alonso, C.R., Maxton-Kuechenmeister, J. & Akam, M. Evolution of Ftz protein function in insects. Curr. Biol. 11, 1473–1478 (2001).

    Article  CAS  Google Scholar 

  10. Wimmer, E.A., Carleton, A., Harjes, P., Turner, T. & Desplan, C. bicoid-independent formation of thoracic segments in Drosophila. Science 287, 2476–2479 (2000).

    Article  CAS  Google Scholar 

  11. Wagner, G.P. & Gauthier, J.A. 1,2,3 = 2,3,4: a solution to the problem of the homology of the digits in the avian hand. Proc. Natl. Acad. Sci. USA 96, 5111–5116 (1999).

    Article  CAS  Google Scholar 

  12. Wagner, G.P. & Misof, B.Y. How can a character be developmentally constrained despite variation in developmental pathways? J. Evol. Biol. 6, 449–455 (1993).

    Article  Google Scholar 

  13. Palopoli, M.F., Davis, A.W. & Wu, C.I. Discord between the phylogenies inferred from molecular versus functional data: uneven rates of functional evolution or low levels of gene flow? Genetics 144, 1321–1328 (1996).

    CAS  Google Scholar 

  14. Reinke, V. & White, K. Developmental genomic approaches in model organisms. Annu. Rev. Genom. Hum. G. 3, 153–178 (2002).

    Article  Google Scholar 

  15. Cavalieri, D., Townsend, J.P. & Hartl, D.L. Manifold anomalies in gene expression in a vineyard isolate of Saccharomyces cerevisiae revealed by DNA microarray analysis. Proc. Natl. Acad. Sci. USA 97, 12369–12374 (2000).

    Article  CAS  Google Scholar 

  16. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  Google Scholar 

  17. Damerval, C., Maurice, A., Josse, J.M. & Devienne, D. Quantitative trait loci underlying gene-product variation—a novel perspective for analyzing regulation of genome expression. Genetics 137, 289–301 (1994).

    CAS  Google Scholar 

  18. Jin, W. et al. The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nat. Genet. 29, 389–395 (2001).

    Article  CAS  Google Scholar 

  19. Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray. Science 270, 467–470 (1995).

    Article  CAS  Google Scholar 

  20. Riddiford, L.M. in The Development of Drosophila melanogaster Vol. 2 (eds. Bate, M. & Arias, A.M.) 899–940 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1993).

    Google Scholar 

  21. White, K.P., Rifkin, S.A., Hurban, P. & Hogness, D.S. Microarray analysis of Drosophila development during metamorphosis. Science 286, 2179–2184 (1999).

    Article  CAS  Google Scholar 

  22. Arbeitman, M.N. et al. Gene expression during the life cycle of Drosophila melanogaster. Science 297, 2270–2275 (2002).

    Article  CAS  Google Scholar 

  23. Moriyama, E.N. & Powell, J.R. Intraspecific nuclear DNA variation in Drosophila. Mol. Biol. Evol. 13, 261–277 (1996).

    Article  CAS  Google Scholar 

  24. Lachaise, D. et al. Historical biogeography of the Drosophila melanogaster species subgroup. Evol. Biol. 22, 159–225 (1988).

    Article  Google Scholar 

  25. Powell, J.R. Progress and Prospects in Evolutionary Biology. The Drosophila Model (Oxford Univ. Press, New York, 1997).

    Google Scholar 

  26. Kerr, M.K. et al. Statistical analysis of a gene expression microarray experiment with replication. Stat. Sin. 12, 203–217 (2002).

    Google Scholar 

  27. Lande, R. Natural selection and random genetic drift in phenotypic evolution. Evolution 30, 314–334 (1976).

    Article  Google Scholar 

  28. Lynch, M. & Hill, W.G. Phenotypic evolution by neutral mutation. Evolution 40, 915–935 (1986).

    Article  Google Scholar 

  29. Turelli, M., Gillespie, J.H. & Lande, R. Rate tests for selection on quantitative characters during macroevolution and microevolution. Evolution 42, 1085–1089 (1988).

    Article  Google Scholar 

  30. Ashburner, M. Patterns of puffing activity in salivary gland chromosomes of Drosophila. 3. A comparison of autosomal puffing patterns of sibling species D. melanogaster and D. simulans. Chromosoma 27, 156–177 (1969).

    Article  CAS  Google Scholar 

  31. Ashburner, M. & Lemeunie, F. Patterns of puffing activity in salivary-gland chromosomes of Drosophila.7. Homology of puffing patterns on chromosome arm 3L in D. melanogaster and D. yakuba, with notes on puffing in D. teissieri. Chromosoma 38, 283–295 (1972).

    Article  CAS  Google Scholar 

  32. Wensink, P.C., Finnegan, D.J., Donelson, J.E. & Hogness, D.S. System for mapping DNA sequences in chromosomes of Drosophila melanogaster. Cell 3, 315–325 (1974).

    Article  CAS  Google Scholar 

  33. Stowers, R.S., Russell, S. & Garza, D. The 82F late puff contains the L82 gene, an essential member of a novel gene family. Dev. Biol. 213, 116–130 (1999).

    Article  CAS  Google Scholar 

  34. The Gene Ontology Consortium. The Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

  35. Robertson, C.W. The metamorphosis of Drosophila melanogaster, including an accurately timed account of the principal morphological changes. J. Morphol. 59, 351–399 (1939).

    Article  Google Scholar 

  36. Lewontin, R.C. The organism as the subject and object of evolution. Scientia 188, 65–82 (1983).

    Google Scholar 

  37. Toma, D.P., White, K.P., Hirsch, J. & Greenspan, R.J. Identification of genes involved in Drosophila melanogaster geotaxis, a complex behavioral trait. Nat. Genet. 31, 349–353 (2002).

    Article  CAS  Google Scholar 

  38. White, K.P. Functional genomics and the study of development, variation, and evolution. Nat. Rev. Genet. 2, 528–537 (2001).

    Article  CAS  Google Scholar 

  39. Maroni, G. & Stamey, S.C. Use of blue food to select synchronous late 3rd instar larvae. Drosoph. Inf. Serv. 59, 142–143 (1983).

    Google Scholar 

  40. Andres, A.J. & Thummel, C.S. Methods for quantitative analysis of transcription in larvae and prepupae. Methods Cell Biol. 44, 565–573 (1994).

    Article  CAS  Google Scholar 

  41. Diehl, F., Grahlmann, S., Beier, M. & Hoheisel, J.D. Manufacturing DNA microarrays of high spot homogeneity and reduced background signal. Nucleic Acids Res. 29, e38 (2001).

    Article  CAS  Google Scholar 

  42. Yang, Y.H., Buckley, M.J., Dudoit, S. & Speed, T.P. Comparison of methods for image analysis on cDNA microarray data. J. Comput. Graph. Stat. 11, 108–136 (2002).

    Article  Google Scholar 

  43. Yang, Y.H., Dudoit, S., Luu, P. & Speed, T.P. Normalization for cDNA microarray data. Proc. SPIE 4266, 141–152 (2001).

    Article  CAS  Google Scholar 

  44. Kerr, M.K., Martin, M. & Churchill, G.A. Analysis of variance for gene expression microarray data. J. Comput. Biol. 7, 819–837 (2000).

    Article  CAS  Google Scholar 

  45. Martins, E.P. Estimating the rate of phenotypic evolution from comparative data. Am. Nat. 144, 193–209 (1994).

    Article  Google Scholar 

  46. Hansen, T.F. & Martins, E.P. Translating between microevolutionary process and macroevolutionary patterns: the correlation structure of interspecific data. Evolution 50, 1404–1417 (1996).

    Article  Google Scholar 

  47. Sokal, R.R. & Rohlf, F.J. Biometry (W.H. Freeman and Company, New York, 1995).

  48. Li, Y.J., Satta, Y. & Takahata, N. Paleo-demography of the Drosophila melanogaster subgroup: application of the maximum likelihood method. Genes Genet. Syst. 74, 117–127 (1999).

    Article  CAS  Google Scholar 

  49. Swofford, D.L. PAUP*: phylogenetic analysis using parsimony (and other methods), edn 4.0 (Sinauer, Sunderland, MA, 1996).

  50. Thummel, C.S. Molecular mechanisms of developmental timing in C. elegans and Drosophila. Dev. Cell 1, 453–465 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Davis for the Netherlands2 line, and M. Feldman, B. Null, P. Lizardi, J. Leamon, P. Magwene, G. Wagner, S. Rice, J.D.Lambert, T.-R. Li, N. Carriero and members of the Kim and White laboratories for advice, support and technical help. This research was supported by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin P. White.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rifkin, S., Kim, J. & White, K. Evolution of gene expression in the Drosophila melanogaster subgroup. Nat Genet 33, 138–144 (2003). https://doi.org/10.1038/ng1086

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1086

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing