Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Absence of integrin α6 leads to epidermolysis bullosa and neonatal death in mice

Abstract

Cell-extracellular matrix interactions have important roles in many biological processes, including embryonic development, growth control and differentiation. Integrins are the principal receptors for extracellular matrix1. They are composed of non-covalently associated α and β chains1. Integrin oc6 can associate with either β1 or β4 (refs 2,3). Both integrin complexes are receptors for laminins, major components of basement membranes2,3. The distribution of α6 (refs 4–10) as well as studies using function-blocking antibodies have suggested an essential role for this laminin receptor during embryogenesis, in processes such as endoderm migration4,5 or kidney tubule formation9. Here we report that, surprisingly, mice lacking the α6 integrin chain develop to birth. However, they die at birth with severe blistering of the skin and other epithelia, a phenotype reminiscent of the human disorder epidermolysis bullosa11. Hemidesmo-somes are absent in mutant tissue. This absence is likely to result from the lack of α6/β4, the only integrin in hemidesmosomes of stratified squamous and transitional epithelia12–14. Mutations in the genes encoding integrin β4 and chains of laminin-5 have been implicated in junctional epidermolysis bullosa15–18. Our study provides evidence that some forms of epidermolysis bullosa may originate from defects of the α6 gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hynes, R.O. Integrins: versatility, modulation and signaling in cell adhesion. Cell 69, 11–25 (1992).

    Article  CAS  Google Scholar 

  2. Delwel, G.O. & Sonnenberg, A. Laminin isoforms and their integrin receptors. in Adhesion receptors as therapeutic targets. (ed Michael Norton) 9–36 (CRC Press, 1996).

    Google Scholar 

  3. Hemler, M.E., Grouse, C. & Sonnenberg, A. Association of the VLA alpha 6 subunit with a novel protein A possible alternative to the common VLA beta-1 subunit on certain cell lines. J. Biol. Chem. 264, 6529–6535 (1989).

    CAS  PubMed  Google Scholar 

  4. Sutherland, A.E., Calarco, R.G. & Damsky, C.H. Developmental regulation of integrin expression at the time of implantation in the mouse embryo. Devel. 119, 1175–1186 (1993).

    CAS  Google Scholar 

  5. Damsky, C., Sutherland, A. & Fisher, S. Extracellular matrix 5: Adhesive interactions in early mammalian embryogenesis, implantation and placentation. FASEB J. 7, 1320–1329 (1993).

    Article  CAS  Google Scholar 

  6. Hierck, B.P. et al. Variants of the alpha 6 beta 1 laminin receptor in early murine development: distribution, molecular cloning and chromosomal localization of the mouse integrin alpha 6 subunit. Cell Adh. Comm. 1, 33–53 (1993).

    Article  CAS  Google Scholar 

  7. Collo, G., Domanico, S.Z., Klier, G. & Quaranta, V. Gradient of integrin α6A distribution in the myocardium during early heart development. Cell Adh. Comm. 3, 101–113 (1995).

    Article  CAS  Google Scholar 

  8. Thorsteindottir, S., Roelen, B., Freund, E., Caspar, A., Sonnenberg, A. & Mummery, C. Expression patterns of laminin receptor splice variants α6β31 and α6β31 suggest different roles in mouse development. Dev. Dyn. 204, 240–258 (1995).

    Article  Google Scholar 

  9. Sorokin, L., Sonnenberg, A., Aumailley, M., Timpl, R. & Ekblom, R. Recognition of the laminin E8 cell-binding site by an integrin possessing the α6 subunit is essential for epithelial polarization in developing kidney tubules. J. Cell Biol. 111, 1265–1273 (1990).

    Article  CAS  Google Scholar 

  10. Simon-Assman, P. et al. Differential expression of laminin isoforms and α6Aβ4 integrin subunits in the developing human and mouse intestine. Dev. Dyn. 201, 71–85 (1994).

    Article  Google Scholar 

  11. Fine, J.D., Bauer, E.A., Briggaman, R.A. & Carter, D.M. Revised clinical and laboratory criteria for subtypes of inherited epidermolysis bullosa. J. Am. Acad. Dermatol. 24, 119–135 (1991).

    Article  CAS  Google Scholar 

  12. Stepp, M.A., Spurr-Michaud, S., Tisdale, A., Elwell, J. & Gipson, I.K. Alpha 6 beta 4 integrin heterodimer is a component of hemidesmosomes. Proc. Natl. Acad. Sci. USA 87, 8970–8974 (1990).

    Article  CAS  Google Scholar 

  13. Sonnenberg, A. et al. Integrin αt6β4 complex is located in hemidesmosomes, suggesting a major role in epidermal cell-basement membrane adhesion. J. Cell Biol. 113, 907–917 (1991).

    Article  CAS  Google Scholar 

  14. Jones, J.C.R., Kurpakus, M.A., Cooper, M.H. & Quaranta, V. A function for the α6β4 integrin in the hemidesmosome. Cell. Regul. 2, 427–438 (1991).

    Article  CAS  Google Scholar 

  15. Vidal, F. et al. Integrin β4 mutations associated with junctional epidermolysis bullosa with pyloric atresia. Nature Genet. 10, 229–234 (1995).

    Article  CAS  Google Scholar 

  16. Aberdam, D. et al. Heriitz's junctional epidermolysis bullosa is genetically linked to mutations in the nicein/kalinin (laminin 5) LAMC2 gene. Nature Genet. 6, 293–304 (1994).

    Article  Google Scholar 

  17. Pulkkinen, L. et al. Mutations in the γ2 chain gene (LAMC2) of kalinin/laminin5 in the junctional forms of epidermolysis bullosa. Nature Genet. 6, 293–298 (1994).

    Article  CAS  Google Scholar 

  18. Pulkkinen, L. et al. A homozygous nonsense mutation in the β3 chain geneof laminin 5 QJWIB3) in Herlitz junctional epidermolysis bullosa. Genomics 24, 357–360 (1994).

    Article  CAS  Google Scholar 

  19. Sonnenberg, A., Linders, C.J., Daams, J.H. & Kennel, S.J. The α6β1 (VLA-6) and α6β4 protein complexes: tissue distribution and biochemical properties. J. Cell. Sci. 96, 207–217 (1990).

    CAS  PubMed  Google Scholar 

  20. Rousselle, R., Lunstrum, G.P., Keene, D.R. & Burgeson, R.E. Kalinin: an epithelium-specific basement membrane adhesion molecule that is a component of anchoring filaments. J. Cell Biol. 114, 567–576 (1991).

    Article  CAS  Google Scholar 

  21. Verrando, R., Hsi, B., Yeh, C., Pisani, A., Seryeis, N. & Ortonne, J.R. Monoclonal antibody GB3, a new probe for the study of human basement membranes and hemidesmosomes. Exp. Cell Res. 170, 116–128 (1987).

    Article  CAS  Google Scholar 

  22. Carter, W., Ryan, M. & Gahr, R., a new cell adhesion ligand for integrin α3β1 in epithelial basement membranes. Cell 65, 599–610 (1991).

    Article  CAS  Google Scholar 

  23. Marinkovich, M., Lunstrum, G. & Burgeson, R. The anchoring filament kalinin is synthesized and secreted as a high molecular weight precursor. J. Biol. Chem. 267, 17900–17906 (1992).

    CAS  PubMed  Google Scholar 

  24. Van der Neut, R., Krimpenfort, P., Calafat, J., Niessen, C.M. & Sonnenberg, A. Epithelial detachment due to absence of hemidesmosomes in integrin beta4 null mice. Nature Genet. 13, 366–369 (1996).

    Article  CAS  Google Scholar 

  25. Spinardi, L., Ren, Y.-L., Sanders, R. & Giancotti, F.G. The β4 subunit cytoplasmic domain mediates the interaction of α6β4 with the cytoskeleton of hemidesmosomes. Mol. Biol. Cell 4, 871–884 (1993).

    Article  CAS  Google Scholar 

  26. Quo, L. et al. Gene targeting of BPAG1.: abnormalities in mechanical strength and cell migration in stratified epithelia and neurologic degeneration Cell 81, 223–243 (1995).

    Article  Google Scholar 

  27. De Curtis, I. & Reichardt, L.F. Function and spatial distribution in developing chick retina of the laminin receptor alpha 6 beta 1 and its isoforms. Development 118, 377–388 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tybulewicz, V.L.J., Crawford, C.E., Jackson, P.K., Bronson, R.T. & Mulligan, R.C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–1163 (1991).

    Article  CAS  Google Scholar 

  29. Lufkin, T., Dierich, A., Le Meur, M., Mark, M., Chambon, P. Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell 66, 1105–1119 (1991).

    Article  CAS  Google Scholar 

  30. Laird, P.W., Zijderveld, A., Linders, K., Rudnicki, M.A., Jaenisch, R. & Berns, A. Simplified mammalian DNA isolation procedure. Nucl. Acids Res. 19, 4293 (1991).

    Article  CAS  Google Scholar 

  31. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidiniumthiocyanate-phenol-chloroform extraction Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  32. Masiakowski, P., Breatnach, R., Bloch, J., Gannon, F., Krust, A. & Chambon, P. Cloning of cDNA sequences of hormone-regulated genes from the MCF-7 human breast cancer cell line. Nucl. Acids Res. 10, 7895–7903 (1982).

    Article  CAS  Google Scholar 

  33. Mark, M. et al. Two rhomdomeres are altered in Hoxa-1 mutant mice. Development 119, 319–338 (1993).

    CAS  Google Scholar 

  34. Kennel, S.J., Foote, L.J. & Flynn, K.M. Tumor antigen on benign adenomas and on murine lung carcinomas quantitated by a two-site monoclonal antibody assay. Cancer Res. 46, 707–712 (1986).

    CAS  PubMed  Google Scholar 

  35. Sonnenberg, A., Janssen, H., Hogervorst, F., Calafat, J. & Hilgers, J.A. complex of platelet glycoproteins Ic and Ha identified by a rat monoclonal antibody. J. Biol. Chem. 262, 10376–10383 (1987).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georges-Labouesse, E., Messaddeq, N., Yehia, G. et al. Absence of integrin α6 leads to epidermolysis bullosa and neonatal death in mice. Nat Genet 13, 370–373 (1996). https://doi.org/10.1038/ng0796-370

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0796-370

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing