Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A molecular defect in loricrin, the major component of the cornified cell envelope, underlies Vohwinkel's syndrome

Abstract

Terminal keratinocyte differentiation involves coordinated expression of several functionally interdependent genes, many of which have been mapped to the epidermal differentiation complex (EDC) on chromosome 1q21. We have identified linkage of Vohwinkel's syndrome in an extended pedigree to markers flanking the EDC region with a maximum multipoint lod score of 14.3. Sequencing of the loricrin gene revealed an insertion that shifts the translation frame of the C-terminal Gly– and Gln/Lys–rich domains, and is likely to impair cornification. Our findings provide the first evidence for a defect in an EDC gene in human disease, and disclose novel insights into perturbations of cornified cell envelope formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hohl, D. Cornified cell envelope. Dermatologica 180, 201–211 (1990).

    Article  CAS  Google Scholar 

  2. Roop, D. Defects in the barrier. Science 267, 474–475 (1995).

    Article  CAS  Google Scholar 

  3. Fuchs, E. & Weber, K. Intermediate filaments: structure, dynamics, function, and disease. Ann. Rev. Biochem. 63, 345–382 (1994).

    Article  CAS  Google Scholar 

  4. Huber, M. et al. Mutations of keratinocyte transglutaminase in lamellar ichthyosis. Science 267, 525–528 (1995).

    Article  CAS  Google Scholar 

  5. Russel, L.J. et al. Mutations in the gene for transglutaminase 1 in autosomal recessive lamellar ichthyosis. Nature Genet. 9, 279–283 (1995).

    Article  Google Scholar 

  6. Steven, A.C. & Steinert, P.M. Protein composition of the cornified cell envelope of epidermal keratinocytes. J. Cell Sci. 107, 693–700 (1994).

    CAS  PubMed  Google Scholar 

  7. Volz, A. et al. Physical mapping of a functional cluster of epidermal differentiation genes on chromosome 1 q21. Genomics 18, 92–99 (1993).

    Article  CAS  Google Scholar 

  8. Townes, T.M. & Behringer, R.R. Human globin locus activation region (LAR): role in temporal control. Trends Genet. 6, 219–229 (1990).

    Article  CAS  Google Scholar 

  9. Gibbs, S. et al. Molecular characterization and evolution of the SPRR family of keratinocyte differentiation markers encoding small proline-rich proteins. Genomics 10, 630–737 (1993).

    Article  Google Scholar 

  10. Backendorf, C. & Hohl, D.A. A common origin for cornified cell envelope proteins? Nature Genet. 2, 91 (1992).

    Article  CAS  Google Scholar 

  11. Gan, S.-Q., Mcbride, O.W., Idler, W.W., Markova, N. & Steinert, P.M. Organization, structure and polymorphisms of the human profilaggrin gene. Biochemistry. 29, 9432–9440 (1990).

    Article  CAS  Google Scholar 

  12. Steinert, P.M. & Marekov, L.N. The proteins elafin, filaggrin, keratin intermediate filaments, loricrin, and small proline-rich proteins 1 and 2 are isodipeptide cross-linked components of the human epidermal cornified cell envelope. J. Biol. Chem. 270, 17702–17711 (1995).

    Article  CAS  Google Scholar 

  13. Lee, S.C. et al. The structure of human trichohyalin. Potential multiple roles as a functional EF-hand-like calcium-binding protein, a cornified cell envelope precursor, and an intermediate filament-associated (cross-linking) protein. J. Biol. Chem. 268, 12164–12176 (1993).

    CAS  PubMed  Google Scholar 

  14. Ferrari, S. et al. Structural and functional analysis of a growth related gene, the human calcyclin. J. Biol. Chem. 262, 8325–8332 (1987).

    CAS  PubMed  Google Scholar 

  15. Hohl, D., Lichti, D., Breitkreutz, D., Steinert, P.M. & Roop, D.R. Transcription of the human loricrin gene in vitro is induced by calcium and cell density and suppressed by retinoic acid. J. Invest. Dermatol. 96, 414–418 (1988).

    Article  Google Scholar 

  16. Yuspa, S.H., Kilkenny, A.E., Steinert, P.M. & Roop, D.R. Expression of murine epidermal differentiation markers is tightly regulated by restricted extracellular calcium concentrations in vitro. J. Cell Biol. 109, 1207–1217 (1989).

    Article  CAS  Google Scholar 

  17. Marvin, K.W. et al. Cornifin, a cross-linked envelope precursor in keratinocytes that is down-regulated by retinoids. Proc. Natl. Acad. Sci. USA 89, 11026–11030 (1992).

    Article  CAS  Google Scholar 

  18. Vohwinkel, K.H. Keratoderma hereditaria mutilans. Arch. Dermatol. Syphil. 158, 354–364 (1992).

    Article  Google Scholar 

  19. Camisa, C. & Rossana, C. Variant of keratoderma hereditaria mutilans (Vohwinkel's syndrome). Arch. Dermatol. 120, 1323–1328 (1984).

    Article  CAS  Google Scholar 

  20. Camisa, C., Hessel, A., Rossana, C. & Parks, A. Autosomal dominant keratoderma, ichthyosiform dermatosis and elevated serum beta-glucuronidase. Dermatologica 177, 341–347 (1988).

    Article  CAS  Google Scholar 

  21. Dib, C. et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152–154 (1996).

    Article  CAS  Google Scholar 

  22. O'Connell, J.R. & Weeks, D.E. The VITESSE algorithm for rapid exact multilocus linkage analysis via genotype set-recording and fuzzy inheritance. Nature Genet. 11, 402–408 (1995).

    Article  CAS  Google Scholar 

  23. Yoneda, K. et al. The human loricrin gene. J. Biol. Chem. 267, 18060–18066 (1992).

    CAS  PubMed  Google Scholar 

  24. Hohl, D. et al. Characterization of human loricrin. Structure and function of a new class of epidermal cell envelope proteins. J. Biol. Chem. 266, 6626–6636 (1991).

    CAS  PubMed  Google Scholar 

  25. Ishida-Yamamoto, A., Hohl, D., Roop, D.R., lizuka, H. & Eady, R.A. Loricrin immunoreactivity in human skin: localization to specific granules (L-granules) in acrosyringia. Arch.Dermatol. Res. 285, 491–498 (1993).

    Article  CAS  Google Scholar 

  26. Ishida-Yamamoto, A. et al. Immunoelectron microscopic analysis of cornified cell envelope formation in normal and psoriatic epidermis. J. Histochem. Cytochem. 44, 167–175 (1996).

    Article  CAS  Google Scholar 

  27. Steinert, P.M. et al. Glycine loops in proteins: their occurrence in certain intermediate filament chains, loricrins and single-stranded RNA binding proteins. Int. J. Biol. Macromol. 13, 130–139 (1991).

    Article  CAS  Google Scholar 

  28. Rothnagel, J.A. et al. Characterization of the mouse loricrin gene: linkage with profilaggrin and the flaky tail and soft coat mutant loci on chromosome 3. Genomics. 23, 450–456 (1994).

    Article  CAS  Google Scholar 

  29. Steven, A.C., Bisher, M.E., Roop, D.R. & Steinert, P.M. Biosythetic pathways of filaggrin and loricrin. Two major proteins expressed by terminally differentiated epidermal keratinocytes. J. Struct. Biol. 104, 150–162 (1990).

    Article  CAS  Google Scholar 

  30. Bickenbach, J.R., Greer, J.M., Bundman, D.S., Rothnagel, J.A. & Roop, D.R. Loricrin expression is coordinated with other epidermal proteins and the appearence of lipid lamellar granules in development. J. Invest. Dermatol. 104, 405–410 (1995).

    Article  CAS  Google Scholar 

  31. Yoneda, K. & Steinert, P.M. Overexpression of human loricrin in transgenic mice produces a normal phenotype. Proc. Natl. Acad. Sci. USA 90, 10754–10758 (1993).

    Article  CAS  Google Scholar 

  32. Kimonis, V. et al. A mutation in the V1 end domain of keratin 1 in non-epidermolytic palmar-plantar keratoderma. J. Invest. Dermatol. 103, 764–769 (1994).

    Article  CAS  Google Scholar 

  33. Cheng, J. et al. The genetic basis of epidemnolytic hyperkeratosis: a disorder of differentiation-specific epidermal keratin genes. Cell 70, 811–819 (1992).

    Article  CAS  Google Scholar 

  34. Hohl, D. et al. Expression patterns of loricrin in various species and tissues. Differentiation 54, 25–34 (1993).

    Article  CAS  Google Scholar 

  35. Fuchs, E. & Green, H. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell 19, 1033–1042 (1980).

    Article  CAS  Google Scholar 

  36. Christiano, A.M. & Uitto, J. Molecular diagnosis of inherited skin disorders: The paradigm of dystrophic epidermolysis bullosa. Adv. Dermatol. 11, 199–214 (1996).

    CAS  PubMed  Google Scholar 

  37. Christiano, A.M. & Ditto, J. Molecular complexity of the cutaneous adhesion zone: revelations through the paradigms of epidermolysis bullosa. Exp. Dermatol. 5, 1–11 (1996).

    Article  CAS  Google Scholar 

  38. Bonifas, J.M. et al. Mutations of keratin 9 in two families with palmoplantar epidermolytic hyperkeratosis. J. Invest. Dermat. 103, 474–476 (1994).

    Article  CAS  Google Scholar 

  39. Rothangel, J.A. et al. Mutations in the 1A domain of keratin 9 in patients with epidemolytic palmoplantar keratoderma. J. Invest. Dermatol. 104, 430–433 (1995).

    Article  Google Scholar 

  40. Navsaria, H. A et al. Dltrastructural changes resulting from keratin 9 gene mutations in two families with epidermolytic palmoplantar keratoderma. J. Invest Dermat. 104, 425–429 (1995).

    Article  CAS  Google Scholar 

  41. Rogaev, E.I. et al. Identification of the genetic locus for keratosis palmaris and plantaris on chromosome 17 near the RARA and keratin type 1 genes. Nature Genet. 5, 158–162 (1993).

    Article  CAS  Google Scholar 

  42. Lind, L., Lundström, A., Hofer, P. & Holmgren, G. The gene for diffuse palmoplantar keratoderma of the type found in northern Sweden is localized to chromosome 12q11–q13. Hum. Mol. Genet. 3, 1789–1793 (1994).

    Article  CAS  Google Scholar 

  43. Shamsher, A.K. et al. Novel mutations in keratin 16 gene underlie focal non-epidemolytic palmoplantar keratoderma (NEPPK) in two families. Hum. Mol. Genet. 4, 1875–1881 (1995).

    Article  CAS  Google Scholar 

  44. Bowden, P.E. et al. Mutation of a type II keratin gene (K6a) in pachyonychia congenita. Nature Genet. 10, 363–365 (1995).

    Article  CAS  Google Scholar 

  45. McLean, W.H.I. et al. Keratin 16 and keratin 17 mutations cause pachyonychia congenita. Nature Genet. 9, 273–278 (1995).

    Article  CAS  Google Scholar 

  46. Hennies, H.C., Kuester, W., Mischke, D. & Reis, A. Localization of a locus for the striated form palmoplantar keratoderma to chromosome 18q near the desmosomal cadherin gene cluster. Hum. Mol. Genet. 4, 1015–1020 (1995).

    Article  CAS  Google Scholar 

  47. Traupe, H. Autosomal dominant congenital ichthyosis and keratoderma hereditaria mutilans of Vohwinkel's. In: TTie ichthyoses. A guide to clinical diagnosis, genetic counseling and therapy. 211–212 (Berlin Heidelberg: Springer-Veriag, 1989).

    Google Scholar 

  48. Reed, P.W. et al. Chromosome-specific microsatellite sets for fluorescence-based, semi-automated genome mapping. Nature Genet. 7, 390–395 (1994).

    Article  CAS  Google Scholar 

  49. Lathrop, G.M., Lalouel, J.M., Julier, C. & Ott, J. Strategies for multilocus linkage analysis in humans. Proc. Natl. Acad. Sci. USA 81, 3443–3446 (1984).

    Article  CAS  Google Scholar 

  50. Murray, J.C. et al. A comprehensive human linkage map with centimorgan density. Cooperative Human Linkage Center (CHLC). Science 265, 2049–2054 (1994).

    Article  CAS  Google Scholar 

  51. Sobel, E., Lange, K., O'Connell, J.R. & Weeks, D.E. Haplotyping algorithms. In: Genetic mapping and DNA sequencing: IMA Volumes in Mathematics and its Applications. (eds Speed, T.P. & Waterman, M.S.). (Springer-Veriag, New York, 1995).

    Google Scholar 

  52. Weeks, D.E., Sobel, E., O'Connell, J.R. & Lange, K. Computer programs for multilocus haplotyping of general pedigrees. Am. J. Hum. Genet. 56, 1506–1507 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Larin, Z. & Lehrach, H.G. Yeast artificial chromosomes: an alternative approach to the molecular analysis of mouse developmental mutations. Genet. Res. 56, 203–208 (1990).

    Article  CAS  Google Scholar 

  54. Anand, R. & Southern, E.M. Pulsed field gel electrophoresis. In: Gel Electrophosesis of Nucleic Acids: A Practical Approach. (eds Richwood, D. & Hames, B.D.) 101–124 (Oxford: IRL Press, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maestrini, E., Monaco, A., McGrath, J. et al. A molecular defect in loricrin, the major component of the cornified cell envelope, underlies Vohwinkel's syndrome. Nat Genet 13, 70–77 (1996). https://doi.org/10.1038/ng0596-70

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0596-70

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing