Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A tumor suppressor activity of Drosophila Polycomb genes mediated by JAK-STAT signaling

Abstract

A prevailing paradigm posits that Polycomb Group (PcG) proteins maintain stem cell identity by repressing differentiation genes, and abundant evidence points to an oncogenic role for PcG proteins in human cancer1,2. Here we show using Drosophila melanogaster that a conventional PcG complex can also have a potent tumor suppressor activity. Mutations in any core PRC1 component cause pronounced hyperproliferation of eye imaginal tissue, accompanied by deregulation of epithelial architecture. The mitogenic JAK-STAT pathway is strongly and specifically activated in mutant tissue; activation is driven by transcriptional upregulation of Unpaired (Upd, also known as Outstretched, Os) family ligands. We show here that upd genes are direct targets of PcG-mediated repression in imaginal discs. Ectopic JAK-STAT activity is sufficient to induce overproliferation, whereas reduction of JAK-STAT activity suppresses the PRC1 mutant tumor phenotype. These findings show that PcG proteins can restrict growth directly by silencing mitogenic signaling pathways, shedding light on an epigenetic mechanism underlying tumor suppression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PRC1 components are fly tumor suppressors.
Figure 2: JAK-STAT signaling is ectopically activated in PRC1 mutant tissue.
Figure 3: Unpaired is a direct target of PcG-mediated silencing in imaginal discs.
Figure 4: JAK-STAT signaling drives PRC1 mutant overgrowth.

Similar content being viewed by others

References

  1. Sauvageau, M. & Sauvageau, G. Polycomb group genes: keeping stem cell activity in balance. PLoS Biol. 6, e113 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Valk-Lingbeek, M.E., Bruggeman, S.W. & van Lohuizen, M. Stem cells and cancer; the polycomb connection. Cell 118, 409–418 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Harvey, K.F., Pfleger, C.M. & Hariharan, I.K. The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114, 457–467 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Brumby, A.M. & Richardson, H.E. scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J. 22, 5769–5779 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hariharan, I.K. & Bilder, D. Regulation of imaginal disc growth by tumor-suppressor genes in Drosophila. Annu. Rev. Genet. 40, 335–361 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Newsome, T.P., Asling, B. & Dickson, B.J. Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127, 851–860 (2000).

    CAS  PubMed  Google Scholar 

  7. Brunk, B.P., Martin, E.C. & Adler, P.N. Drosophila genes Posterior Sex Combs and Suppressor two of zeste encode proteins with homology to the murine bmi-1 oncogene. Nature 353, 351–353 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Beuchle, D., Struhl, G. & Muller, J. Polycomb group proteins and heritable silencing of Drosophila Hox genes. Development 128, 993–1004 (2001).

    CAS  PubMed  Google Scholar 

  9. Wu, C.T. & Howe, M. A genetic analysis of the Suppressor 2 of zeste complex of Drosophila melanogaster. Genetics 140, 139–181 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lo, S.M., Ahuja, N.K. & Francis, N.J. Polycomb group protein suppressor 2 of zeste is a functional homolog of posterior sex combs. Mol. Cell Biol. 29, 515–525 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schwartz, Y.B. & Pirrotta, V. Polycomb silencing mechanisms and the management of genomic programmes. Nat. Rev. Genet. 8, 9–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B. & Cavalli, G. Genome regulation by polycomb and trithorax proteins. Cell 128, 735–745 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Grimaud, C., Negre, N. & Cavalli, G. From genetics to epigenetics: the tale of Polycomb group and trithorax group genes. Chromosome Res. 14, 363–375 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Oktaba, K. et al. Dynamic regulation by polycomb group protein complexes controls pattern formation and the cell cycle in Drosophila. Dev. Cell 15, 877–889 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Ringrose, L. Polycomb comes of age: genome-wide profiling of target sites. Curr. Opin. Cell Biol. 19, 290–297 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Schwartz, Y.B. et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat. Genet. 38, 700–705 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Tolhuis, B. et al. Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nat. Genet. 38, 694–699 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Janody, F. et al. A mosaic genetic screen reveals distinct roles for trithorax and polycomb group genes in Drosophila eye development. Genetics 166, 187–200 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martinez, A.M. & Cavalli, G. The role of polycomb group proteins in cell cycle regulation during development. Cell Cycle 5, 1189–1197 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Martinez, A.M., Colomb, S., Dejardin, J., Bantignies, F. & Cavalli, G. Polycomb group-dependent Cyclin A repression in Drosophila. Genes Dev. 20, 501–513 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grewal, S.S., Li, L., Orian, A., Eisenman, R.N. & Edgar, B.A. Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nat. Cell Biol. 7, 295–302 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Tseng, A.S. et al. Capicua regulates cell proliferation downstream of the receptor tyrosine kinase/ras signaling pathway. Curr. Biol. 17, 728–733 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tanimoto, H., Itoh, S., ten Dijke, P. & Tabata, T. Hedgehog creates a gradient of DPP activity in Drosophila wing imaginal discs. Mol. Cell 5, 59–71 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Nellesen, D.T., Lai, E.C. & Posakony, J.W. Discrete enhancer elements mediate selective responsiveness of enhancer of split complex genes to common transcriptional activators. Dev. Biol. 213, 33–53 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Willecke, M. et al. The fat cadherin acts through the hippo tumor-suppressor pathway to regulate tissue size. Curr. Biol. 16, 2090–2100 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Bach, E.A. et al. GFP reporters detect the activation of the Drosophila JAK/STAT pathway in vivo. Gene Expr. Patterns 7, 323–331 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Goodliffe, J.M., Wieschaus, E. & Cole, M.D. Polycomb mediates Myc autorepression and its transcriptional control of many loci in Drosophila. Genes Dev. 19, 2941–2946 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun, Y.H. et al. White as a reporter gene to detect transcriptional silencers specifying position-specific gene expression during Drosophila melanogaster eye development. Genetics 141, 1075–1086 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bach, E.A., Vincent, S., Zeidler, M.P. & Perrimon, N. A sensitized genetic screen to identify novel regulators and components of the Drosophila janus kinase/signal transducer and activator of transcription pathway. Genetics 165, 1149–1166 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ekas, L.A., Baeg, G.H., Flaherty, M.S., Ayala-Camargo, A. & Bach, E.A. JAK/STAT signaling promotes regional specification by negatively regulating wingless expression in Drosophila. Development 133, 4721–4729 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Tsai, Y.C. & Sun, Y.H. Long-range effect of upd, a ligand for Jak/STAT pathway, on cell cycle in Drosophila eye development. Genesis 39, 141–153 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Sehnal, F. & Bryant, P.J. Delayed pupariation in Drosophila imaginal disc overgrowth mutants is associated with reduced ecdysteroid titer. J. Insect Physiol. 39, 1051–1059 (1993).

    Article  CAS  Google Scholar 

  33. Menut, L. et al. A mosaic genetic screen for Drosophila neoplastic tumor suppressor genes based on defective pupation. Genetics 177, 1667–1677 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brown, S., Hu, N. & Hombria, J.C. Identification of the first invertebrate interleukin JAK/STAT receptor, the Drosophila gene domeless. Curr. Biol. 11, 1700–1705 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Callus, B.A. & Mathey-Prevot, B. SOCS36E, a novel Drosophila SOCS protein, suppresses JAK/STAT and EGF-R signalling in the imaginal wing disc. Oncogene 21, 4812–4821 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Sparmann, A. & van Lohuizen, M. Polycomb silencers control cell fate, development and cancer. Nat. Rev. Cancer 6, 846–856 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Pietersen, A.M. & van Lohuizen, M. Stem cell regulation by polycomb repressors: postponing commitment. Curr. Opin. Cell Biol. 20, 201–207 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Calás, C. et al. Inactivation of the polycomb group protein Ring1B unveils an antiproliferative role in hematopoietic cell expansion and cooperation with tumorigenesis associated with Ink4a deletion. Mol. Cell. Biol. 28, 1018–1028 (2008).

    Article  Google Scholar 

  39. Kanno, M., Hasegawa, M., Ishida, A., Isono, K. & Taniguchi, M. mel-18, a Polycomb group-related mammalian gene, encodes a transcriptional negative regulator with tumor suppressive activity. EMBO J. 14, 5672–5678 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Majewski, I.J. et al. Polycomb repressive complex 2 (PRC2) restricts hematopoietic stem cell activity. PLoS Biol. 6, e93 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  41. McClure, K.D. & Schubiger, G. Transdetermination: Drosophila imaginal disc cells exhibit stem cell-like potency. Int. J. Biochem. Cell Biol. 39, 1105–1118 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dreesen, O. & Brivanlou, A.H. Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev. 3, 7–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Arbouzova, N.I. & Zeidler, M.P. JAK/STAT signalling in Drosophila: insights into conserved regulatory and cellular functions. Development 133, 2605–2616 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Chang, S. & Aune, T.M. Dynamic changes in histone-methylation 'marks' across the locus encoding interferon-gamma during the differentiation of T helper type 2 cells. Nat. Immunol. 8, 723–731 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Koyanagi, M. et al. EZH2 and histone 3 trimethyl lysine 27 associated with Il4 and Il13 gene silencing in Th1 cells. J. Biol. Chem. 280, 31470–31477 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Mukherjee, T., Hombria, J.C. & Zeidler, M.P. Opposing roles for Drosophila JAK/STAT signalling during cellular proliferation. Oncogene 24, 2503–2511 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Coelho, C.M. et al. Growth and cell survival are unevenly impaired in pixie mutant wing discs. Development 132, 5411–5424 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Klebes, A. et al. Regulation of cellular plasticity in Drosophila imaginal disc cells by the Polycomb group, trithorax group and lama genes. Development 132, 3753–3765 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Lee, N., Maurange, C., Ringrose, L. & Paro, R. Suppression of Polycomb group proteins by JNK signalling induces transdetermination in Drosophila imaginal discs. Nature 438, 234–237 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. McClure, K.D. & Schubiger, G. A screen for genes that function in leg disc regeneration in Drosophila melanogaster. Mech. Dev. 125, 67–80 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Parrish, J.Z., Emoto, K., Jan, L.Y. & Jan, Y.N. Polycomb genes interact with the tumor suppressor genes hippo and warts in the maintenance of Drosophila sensory neuron dendrites. Genes Dev. 21, 956–972 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tapon, N., Ito, N., Dickson, B.J., Treisman, J.E. & Hariharan, I.K. The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell 105, 345–355 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Peng, J.C. & Karpen, G.H. H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat. Cell Biol. 9, 25–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Strutt, H., Cavalli, G. & Paro, R. Co-localization of Polycomb protein and GAGA factor on regulatory elements responsible for the maintenance of homeotic gene expression. EMBO J. 16, 3621–3632 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Lueras for assistance with genetic screening, C. Marconett for help with genetic mapping, members of the Vance and Barton laboratories for assistance with quantitative PCR, and G. Cavalli and A.-M. Martinez for communication before publication. We further thank the Bloomington Stock Center and the Developmental Studies Hybridoma Bank, as well as J. Treisman, R. Emmons, I. Hariharan, J. Simon, J. Mueller, E. Bach, J. Parrish, R. Mann, G. Halder, N. Perrimon, D. Harrison and B. Mathey-Prevot, for kindly providing flies and reagents. The authors are grateful to members of the Bilder, Hariharan, Karpen, Speed and Biggin labs for their invaluable input and help. This work was supported by grants from the US National Institutes of Health (R01 GM068675) and The Burroughs Welcome Trust to D.B. A.K.C was supported by a fellowship from Jane Coffin Childs Memorial Foundation. K.F.H. holds Career Development Awards from the International Human Frontier Science Program Organization and the National Health and Medical Research Council of Australia. T.V. was supported by a fellowship from the American Heart Association.

Author information

Authors and Affiliations

Authors

Contributions

A.K.C. and D.B. conceived the study and wrote the paper. A.K.C. carried out the experiments and analyzed the data. B.D.B. carried out the molecular and T.V. the genetic mapping of the P3C allele, which was isolated and initially characterized by K.F.H.

Corresponding author

Correspondence to David Bilder.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1 and 2 (PDF 1343 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Classen, AK., Bunker, B., Harvey, K. et al. A tumor suppressor activity of Drosophila Polycomb genes mediated by JAK-STAT signaling. Nat Genet 41, 1150–1155 (2009). https://doi.org/10.1038/ng.445

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.445

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing