Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis

Abstract

Val-boroPro (Talabostat, PT-100), a nonselective inhibitor of post-proline cleaving serine proteases, stimulates mammalian immune systems through an unknown mechanism of action. Despite this lack of mechanistic understanding, Val-boroPro has attracted substantial interest as a potential anticancer agent, reaching phase 3 trials in humans. Here we show that Val-boroPro stimulates the immune system by triggering a proinflammatory form of cell death in monocytes and macrophages known as pyroptosis. We demonstrate that the inhibition of two serine proteases, DPP8 and DPP9, activates the pro-protein form of caspase-1 independent of the inflammasome adaptor ASC. Activated pro-caspase-1 does not efficiently process itself or IL-1β but does cleave and activate gasdermin D to induce pyroptosis. Mice lacking caspase-1 do not show immune stimulation after treatment with Val-boroPro. Our data identify what is to our knowledge the first small molecule that induces pyroptosis and reveals a new checkpoint that controls the activation of the innate immune system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Val-boroPro is cytotoxic to monocytes and macrophages.
Figure 2: DPP8/9 inhibition induces cell death.
Figure 3: DPP8/9 inhibitor cytotoxicity is caspase-1 dependent.
Figure 4: DPP8/9 inhibition activates pro-caspase-1 without autoproteolysis.
Figure 5: GSDMD is cleaved after DPP8/9 inhibition and contributes to cell death.
Figure 6: Val-boroPro does not induce cytokines in caspase-1 knockout mice.

Similar content being viewed by others

References

  1. Zitvogel, L., Tesniere, A. & Kroemer, G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat. Rev. Immunol. 6, 715–727 (2006).

    Article  CAS  Google Scholar 

  2. Dunn, G.P., Bruce, A.T., Ikeda, H., Old, L.J. & Schreiber, R.D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991–998 (2002).

    Article  CAS  Google Scholar 

  3. Topalian, S.L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  Google Scholar 

  4. Wolchok, J.D. et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133 (2013).

    Article  CAS  Google Scholar 

  5. Sharma, P. & Allison, J.P. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205–214 (2015).

    Article  CAS  Google Scholar 

  6. Couzin-Frankel, J. Breakthrough of the year 2013. Cancer immunotherapy. Science 342, 1432–1433 (2013).

    Article  CAS  Google Scholar 

  7. Adams, S. et al. PT-100, a small molecule dipeptidyl peptidase inhibitor, has potent antitumor effects and augments antibody-mediated cytotoxicity via a novel immune mechanism. Cancer Res. 64, 5471–5480 (2004).

    Article  CAS  Google Scholar 

  8. Walsh, M.P. et al. Val-boroPro accelerates T cell priming via modulation of dendritic cell trafficking resulting in complete regression of established murine tumors. PLoS One 8, e58860 (2013).

    Article  CAS  Google Scholar 

  9. Jones, B. et al. Hematopoietic stimulation by a dipeptidyl peptidase inhibitor reveals a novel regulatory mechanism and therapeutic treatment for blood cell deficiencies. Blood 102, 1641–1648 (2003).

    Article  CAS  Google Scholar 

  10. Jesson, M.I. et al. Immune mechanism of action of talabostat: a dipeptidyl peptidase targeted antitumor agent. in Proceedings of the 98th Annual Meeting of the American Association for Cancer Research abstr. 1984 (2007).

  11. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

    Article  CAS  Google Scholar 

  12. Broz, P. Immunology: Caspase target drives pyroptosis. Nature 526, 642–643 (2015).

    Article  CAS  Google Scholar 

  13. Kortmann, J., Brubaker, S.W. & Monack, D.M. Cutting Edge: Inflammasome Activation in Primary Human Macrophages Is Dependent on Flagellin. J. Immunol. 195, 815–819 (2015).

    Article  CAS  Google Scholar 

  14. Lankas, G.R. et al. Dipeptidyl peptidase IV inhibition for the treatment of type 2 diabetes: potential importance of selectivity over dipeptidyl peptidases 8 and 9. Diabetes 54, 2988–2994 (2005).

    Article  CAS  Google Scholar 

  15. Bachovchin, D.A. et al. A high-throughput, multiplexed assay for superfamily-wide profiling of enzyme activity. Nat. Chem. Biol. 10, 656–663 (2014).

    Article  CAS  Google Scholar 

  16. Ohnuma, K. et al. CD26 up-regulates expression of CD86 on antigen-presenting cells by means of caveolin-1. Proc. Natl. Acad. Sci. USA 101, 14186–14191 (2004).

    Article  CAS  Google Scholar 

  17. Lee, H.J. et al. Investigation of the dimer interface and substrate specificity of prolyl dipeptidase DPP8. J. Biol. Chem. 281, 38653–38662 (2006).

    Article  CAS  Google Scholar 

  18. Tang, H.K. et al. Biochemical properties and expression profile of human prolyl dipeptidase DPP9. Arch. Biochem. Biophys. 485, 120–127 (2009).

    Article  CAS  Google Scholar 

  19. Ajami, K., Abbott, C.A., McCaughan, G.W. & Gorrell, M.D. Dipeptidyl peptidase 9 has two forms, a broad tissue distribution, cytoplasmic localization and DPIV-like peptidase activity. Biochim. Biophys. Acta 1679, 18–28 (2004).

    Article  CAS  Google Scholar 

  20. Abbott, C.A. et al. Cloning, expression and chromosomal localization of a novel human dipeptidyl peptidase (DPP) IV homolog, DPP8. Eur. J. Biochem. 267, 6140–6150 (2000).

    Article  CAS  Google Scholar 

  21. Zhang, H., Chen, Y., Keane, F.M. & Gorrell, M.D. Advances in understanding the expression and function of dipeptidyl peptidase 8 and 9. Mol. Cancer Res. 11, 1487–1496 (2013).

    Article  CAS  Google Scholar 

  22. Waumans, Y., Baerts, L., Kehoe, K., Lambeir, A.M. & De Meester, I. The dipeptidyl peptidase family, prolyl oligopeptidase, and prolyl carboxypeptidase in the immune system and inflammatory disease, including atherosclerosis. Front. Immunol. 6, 387 (2015).

    Article  Google Scholar 

  23. Wagner, L., Klemann, C., Stephan, M. & von Hörsten, S. Unravelling the immunological roles of dipeptidyl peptidase 4 (DPP4) activity and/or structure homologue (DASH) proteins. Clin. Exp. Immunol. 184, 265–283 (2016).

    Article  CAS  Google Scholar 

  24. Jiaang, W.T. et al. Novel isoindoline compounds for potent and selective inhibition of prolyl dipeptidase DPP8. Bioorg. Med. Chem. Lett. 15, 687–691 (2005).

    Article  CAS  Google Scholar 

  25. Wu, J.J. et al. Biochemistry, pharmacokinetics, and toxicology of a potent and selective DPP8/9 inhibitor. Biochem. Pharmacol. 78, 203–210 (2009).

    Article  CAS  Google Scholar 

  26. Waumans, Y. et al. The dipeptidyl peptidases 4, 8, and 9 in mouse monocytes and macrophages: DPP8/9 inhibition attenuates M1 macrophage activation in mice. Inflammation 39, 413–424 (2016).

    Article  CAS  Google Scholar 

  27. Lamkanfi, M. & Dixit, V.M. Mechanisms and functions of inflammasomes. Cell 157, 1013–1022 (2014).

    Article  CAS  Google Scholar 

  28. Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014).

    Article  CAS  Google Scholar 

  29. Augeri, D.J. et al. Discovery and preclinical profile of Saxagliptin (BMS-477118): a highly potent, long-acting, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J. Med. Chem. 48, 5025–5037 (2005).

    Article  CAS  Google Scholar 

  30. Villhauer, E.B. et al. 1-[[(3-hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. J. Med. Chem. 46, 2774–2789 (2003).

    Article  CAS  Google Scholar 

  31. Matheeussen, V. et al. Dipeptidyl peptidases in atherosclerosis: expression and role in macrophage differentiation, activation and apoptosis. Basic Res. Cardiol. 108, 350 (2013).

    Article  Google Scholar 

  32. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

    Article  CAS  Google Scholar 

  33. Pelegrin, P., Barroso-Gutierrez, C. & Surprenant, A. P2X7 receptor differentially couples to distinct release pathways for IL-1β in mouse macrophage. J. Immunol. 180, 7147–7157 (2008).

    Article  CAS  Google Scholar 

  34. Broz, P., von Moltke, J., Jones, J.W., Vance, R.E. & Monack, D.M. Differential requirement for caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 8, 471–483 (2010).

    Article  CAS  Google Scholar 

  35. Van Opdenbosch, N. et al. Activation of the NLRP1b inflammasome independently of ASC-mediated caspase-1 autoproteolysis and speck formation. Nat. Commun. 5, 3209 (2014).

    Article  Google Scholar 

  36. Guey, B., Bodnar, M., Manié, S.N., Tardivel, A. & Petrilli, V. Caspase-1 autoproteolysis is differentially required for NLRP1b and NLRP3 inflammasome function. Proc. Natl. Acad. Sci. USA 111, 17254–17259 (2014).

    Article  CAS  Google Scholar 

  37. He, W.T. et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 25, 1285–1298 (2015).

    Article  CAS  Google Scholar 

  38. Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011).

    Article  CAS  Google Scholar 

  39. Wilson, C.H. et al. Identifying natural substrates for dipeptidyl peptidases 8 and 9 using terminal amine isotopic labeling of substrates (TAILS) reveals in vivo roles in cellular homeostasis and energy metabolism. J. Biol. Chem. 288, 13936–13949 (2013).

    Article  CAS  Google Scholar 

  40. Zhang, H. et al. Identification of novel dipeptidyl peptidase 9 substrates by two-dimensional differential in-gel electrophoresis. FEBS J. 282, 3737–3757 (2015).

    Article  CAS  Google Scholar 

  41. Burkey, B.F. et al. Adverse effects of dipeptidyl peptidases 8 and 9 inhibition in rodents revisited. Diabetes Obes. Metab. 10, 1057–1061 (2008).

    Article  CAS  Google Scholar 

  42. Rosenblum, J.S., Liu, Y., Wu, J. & Kozarich, J.W. The case against toxicity from DPP8/9 inhibition. in American Diabetes Association Conference (2007).

  43. Doench, J.G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    Article  CAS  Google Scholar 

  44. Sanjana, N.E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

    Article  CAS  Google Scholar 

  45. Coutts, S.J. et al. Structure-activity relationships of boronic acid inhibitors of dipeptidyl peptidase IV. 1. Variation of the P2 position of Xaa-boroPro dipeptides. J. Med. Chem. 39, 2087–2094 (1996).

    Article  CAS  Google Scholar 

  46. Danilova, O., Li, B., Szardenings, A.K., Huber, B.T. & Rosenblum, J.S. Synthesis and activity of a potent, specific azabicyclo[3.3.0]-octane-based DPP II inhibitor. Bioorg. Med. Chem. Lett. 17, 507–510 (2007).

    Article  CAS  Google Scholar 

  47. Wang, X.M., Yu, D.M., McCaughan, G.W. & Gorrell, M.D. Fibroblast activation protein increases apoptosis, cell adhesion, and migration by the LX-2 human stellate cell line. Hepatology 42, 935–945 (2005).

    Article  CAS  Google Scholar 

  48. Poplawski, S.E. et al. Identification of selective and potent inhibitors of fibroblast activation protein and prolyl oligopeptidase. J. Med. Chem. 56, 3467–3477 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Fujisawa for microscopy assistance, E. De Stanchina and B. Qeriqi for assistance harvesting mBMDMs, C. Taabazuing for helpful comments and A. Kentsis and F. Brown (Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center) for the HL-60 cell line. This work was supported by the Josie Robertson Foundation (D.A.B.), the MSKCC Core Grant (P30 CA008748), the NCI (grant no. U54CA112962 to T.R.G.), HHMI (T.R.G.) and the NIH (CA174008-01A1 to W.W.B. and NIH NIGMS T32 GM115327-Tan to D.C.J.).

Author information

Authors and Affiliations

Authors

Contributions

D.A.B. conceived and directed the project, performed experiments, analyzed data and wrote the paper; M.C.O., D.C.J., R.S., E.B.G., A.J.C. and M.S.W. performed experiments and analyzed data; S.E.P. performed the in vivo mouse experiments and the intracellular DPP8/9 inhibition experiment; W.W.B. and D.G.S. directed the in vivo mouse experiments; W.W., Y.L. and J.H.L. synthesized Val-boroPro, 1G244, L-allo-isoleucin-isoindoline, L-allo-isoleucine-thiazolidine, compound 5385 and FP-biotin; M.O.A. characterized compound 5385. T.R.G. and W.W.B. helped plan the study.

Corresponding author

Correspondence to Daniel A Bachovchin.

Ethics declarations

Competing interests

W.W.B. is a co-founder, advisor and board member of Arisaph Pharmaceuticals, a biotechnology company interested in developing boronic acid–based inhibitors of serine proteases as therapeutics.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1 and 2 and Supplementary Figures 1–12. (PDF 14969 kb)

Supplementary Video 1

DMSO-treated RAW 264.7 cells. (MOV 17579 kb)

Supplementary Video 2

Etoposide-induced apoptosis in RAW 264.7 cells. (MOV 13930 kb)

Supplementary Video 3

Val-boroPro-induced pyroptosis in RAW 264.7 cells. (MOV 15726 kb)

Supplementary Video 4

1G244-induced pyroptosis in RAW 264.7 cells. (MOV 13860 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okondo, M., Johnson, D., Sridharan, R. et al. DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis. Nat Chem Biol 13, 46–53 (2017). https://doi.org/10.1038/nchembio.2229

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2229

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research