Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A family of metal-dependent phosphatases implicated in metabolite damage-control

Abstract

DUF89 family proteins occur widely in both prokaryotes and eukaryotes, but their functions are unknown. Here we define three DUF89 subfamilies (I, II, and III), with subfamily II being split into stand-alone proteins and proteins fused to pantothenate kinase (PanK). We demonstrated that DUF89 proteins have metal-dependent phosphatase activity against reactive phosphoesters or their damaged forms, notably sugar phosphates (subfamilies II and III), phosphopantetheine and its S-sulfonate or sulfonate (subfamily II-PanK fusions), and nucleotides (subfamily I). Genetic and comparative genomic data strongly associated DUF89 genes with phosphoester metabolism. The crystal structure of the yeast (Saccharomyces cerevisiae) subfamily III protein YMR027W revealed a novel phosphatase active site with fructose 6-phosphate and Mg2+ bound near conserved signature residues Asp254 and Asn255 that are critical for activity. These findings indicate that DUF89 proteins are previously unrecognized hydrolases whose characteristic in vivo function is to limit potentially harmful buildups of normal or damaged phosphometabolites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The three subfamilies of DUF89 proteins.
Figure 2: Substrate profiles of DUF89 proteins from each subfamily.
Figure 3: Phosphatase activities of pantothenate kinase DUF89 domains in relation to CoA synthesis and salvage.
Figure 4: Hexose metabolism in wild-type and ΔYMR027W yeast strains.
Figure 5: Overall structures of DUF89 protomers.
Figure 6: Close-up views of the active site of DUF89 proteins.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Galperin, M.Y. & Koonin, E.V. From complete genome sequence to 'complete' understanding? Trends Biotechnol. 28, 398–406 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bitto, E., Bingman, C.A., Allard, S.T., Wesenberg, G.E. & Phillips, G.N. Jr. The structure at 1.7 A resolution of the protein product of the At2g17340 gene from Arabidopsis thaliana. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61, 630–635 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tilton, G.B., Wedemeyer, W.J., Browse, J. & Ohlrogge, J. Plant coenzyme A biosynthesis: characterization of two pantothenate kinases from Arabidopsis. Plant Mol. Biol. 61, 629–642 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Hörtnagel, K., Prokisch, H. & Meitinger, T. An isoform of hPANK2, deficient in pantothenate kinase-associated neurodegeneration, localizes to mitochondria. Hum. Mol. Genet. 12, 321–327 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Gasch, A.P. et al. Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Mol. Biol. Cell 12, 2987–3003 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alvaro, D., Lisby, M. & Rothstein, R. Genome-wide analysis of Rad52 foci reveals diverse mechanisms impacting recombination. PLoS Genet. 3, e228 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Perry, J.J. et al. Human C6orf211 encodes Armt1, a protein carboxyl methyltransferase that targets PCNA and is linked to the DNA damage response. Cell Rep. 10, 1288–1296 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hernick, M. & Fierke, C.A. Mechanisms of metal-dependent hydrolases in metabolism. in Comprehensive Natural Products II: Chemistry and Biology (eds. Mander, L. & Liu, H.W.) 47–581 (Elsevier, Amsterdam, 2010).

  9. Linster, C.L., Van Schaftingen, E. & Hanson, A.D. Metabolite damage and its repair or pre-emption. Nat. Chem. Biol. 9, 72–80 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Galperin, M.Y., Moroz, O.V., Wilson, K.S. & Murzin, A.G. House cleaning, a part of good housekeeping. Mol. Microbiol. 59, 5–19 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Reaves, M.L., Young, B.D., Hosios, A.M., Xu, Y.F. & Rabinowitz, J.D. Pyrimidine homeostasis is accomplished by directed overflow metabolism. Nature 500, 237–241 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Frelin, O. et al. A directed-overflow and damage-control N-glycosidase in riboflavin biosynthesis. Biochem. J. 466, 137–145 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Suhre, K. Inference of gene function based on gene fusion events: the rosetta-stone method. Methods Mol. Biol. 396, 31–41 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Gerdes, S. et al. Plant B vitamin pathways and their compartmentation: a guide for the perplexed. J. Exp. Bot. 63, 5379–5395 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Abiko, Y. Investigations on pantothenic acid and its related compounds. IX. Biochemical studies.4. Separation and substrate specificity of pantothenate kinase and phosphopantothenoylcysteine synthetase. J. Biochem. 61, 290–299 (1967).

    Article  CAS  PubMed  Google Scholar 

  16. Yoshioka, M. & Tamura, Z. Bifidus factors in carrot. II. The structure of the factor in fraction IV. Chem. Pharm. Bull. (Tokyo) 19, 178–185 (1971).

    Article  CAS  Google Scholar 

  17. Nakamura, H. & Tamura, Z. Studies on the metabolites in urine and feces of rat after oral administration of radioactive pantethine. Chem. Pharm. Bull. (Tokyo) 20, 2008–2016 (1972).

    Article  CAS  Google Scholar 

  18. Pierpoint, W.S., Hughes, D.E., Baddiley, J. & Mathias, A.P. The phosphorylation of pantothenic acid by Lactobacillus arabinosus 17-5. Biochem. J. 61, 368–374 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baddiley, J. & Thain, E.M. Coenzyme-A. 6. The identification of pantothenic acid-4′ and -2′-4′ phosphates from a hydrolysate. J. Chem. Soc. 1952, 3783–3789 (1952).

    Article  Google Scholar 

  20. Hanson, A.D., Pribat, A., Waller, J.C. & de Crécy-Lagard, V. 'Unknown' proteins and 'orphan' enzymes: the missing half of the engineering parts list—and how to find it. Biochem. J. 425, 1–11 (2010).

    Article  CAS  Google Scholar 

  21. Overbeek, R. et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 33, 5691–5702 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lukens, L. & Flaks, J. Intermediates in purine nucleotide synthesis. Methods Enzymol. 6, 671–702 (1963).

    Article  CAS  Google Scholar 

  23. Chaudhuri, B., Ingavale, S. & Bachhawat, A.K. apd1+, a gene required for red pigment formation in ade6 mutants of Schizosaccharomyces pombe, encodes an enzyme required for glutathione biosynthesis: a role for glutathione and a glutathione-conjugate pump. Genetics 145, 75–83 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Donaldson, I.A., Doyle, T.C. & Matas, N. Expression of rat liver ketohexokinase in yeast results in fructose intolerance. Biochem. J. 291, 179–186 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gerin, I. et al. Identification of TP53-induced glycolysis and apoptosis regulator (TIGAR) as the phosphoglycolate-independent 2,3-bisphosphoglycerate phosphatase. Biochem. J. 458, 439–448 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Weinberg, M.V., Jenney, F.E. Jr., Cui, X. & Adams, M.W. Rubrerythrin from the hyperthermophilic archaeon Pyrococcus furiosus is a rubredoxin-dependent, iron-containing peroxidase. J. Bacteriol. 186, 7888–7895 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dauter, Z., Wilson, K.S., Sieker, L.C., Moulis, J.M. & Meyer, J. Zinc- and iron-rubredoxins from Clostridium pasteurianum at atomic resolution: a high-precision model of a ZnS4 coordination unit in a protein. Proc. Natl. Acad. Sci. USA 93, 8836–8840 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Midelfort, C.F., Gupta, R.K. & Rose, I.A. Fructose 1,6-bisphosphate: isomeric composition, kinetics, and substrate specificity for the aldolases. Biochemistry 15, 2178–2185 (1976).

    Article  CAS  PubMed  Google Scholar 

  29. Hou, X. et al. Crystallographic studies of human MitoNEET. J. Biol. Chem. 282, 33242–33246 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Hagen, W.R. et al. Novel structure and redox chemistry of the prosthetic groups of the iron-sulfur flavoprotein sulfide dehydrogenase from Pyrococcus furiosus; evidence for a [2Fe-2S] cluster with Asp(Cys)3 ligands. J. Biol. Inorg. Chem. 5, 527–534 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Allen, K.N. & Dunaway-Mariano, D. Markers of fitness in a successful enzyme superfamily. Curr. Opin. Struct. Biol. 19, 658–665 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aravind, L. & Koonin, E.V. The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem. Sci. 23, 469–472 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Mildvan, A.S. et al. Structures and mechanisms of Nudix hydrolases. Arch. Biochem. Biophys. 433, 129–143 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Levi, B. & Werman, M.J. Fructose and related phosphate derivatives impose DNA damage and apoptosis in L5178Y mouse lymphoma cells. J. Nutr. Biochem. 14, 49–60 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Huh, W.K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Goyer, A. et al. A cross-kingdom Nudix enzyme that pre-empts damage in thiamin metabolism. Biochem. J. 454, 533–542 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Fortpied, J., Gemayel, R., Stroobant, V. & van Schaftingen, E. Plant ribulosamine/erythrulosamine 3-kinase, a putative protein-repair enzyme. Biochem. J. 388, 795–802 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rock, C.O., Calder, R.B., Karim, M.A. & Jackowski, S. Pantothenate kinase regulation of the intracellular concentration of coenzyme A. J. Biol. Chem. 275, 1377–1383 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Rothmann, M. et al. Metabolic perturbation of an essential pathway: evaluation of a glycine precursor of coenzyme A. J. Am. Chem. Soc. 135, 5962–5965 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Johnson, D.C., Dean, D.R., Smith, A.D. & Johnson, M.K. Structure, function, and formation of biological iron-sulfur clusters. Annu. Rev. Biochem. 74, 247–281 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Cvetkovic, A. et al. Microbial metalloproteomes are largely uncharacterized. Nature 466, 779–782 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Smith, J.L. et al. Structure of the allosteric regulatory enzyme of purine biosynthesis. Science 264, 1427–1433 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Dupureur, C.M. Roles of metal ions in nucleases. Curr. Opin. Chem. Biol. 12, 250–255 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Lu, Z., Dunaway-Mariano, D. & Allen, K.N. The catalytic scaffold of the haloalkanoic acid dehalogenase enzyme superfamily acts as a mold for the trigonal bipyramidal transition state. Proc. Natl. Acad. Sci. USA 105, 5687–5692 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–10890 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Tamura, K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Leonardi, R. et al. A pantothenate kinase from Staphylococcus aureus refractory to feedback regulation by coenzyme A. J. Biol. Chem. 280, 3314–3322 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Stanford, M. On the determination of cysteine as cysteic acid. J. Biol. Chem. 238, 235–237 (1962).

    Google Scholar 

  50. Kuznetsova, E. et al. Genome-wide analysis of substrate specificities of the Escherichia coli haloacid dehalogenase-like phosphatase family. J. Biol. Chem. 281, 36149–36161 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Broadwater, J.A. & Fox, B.G. Spinach holo-acyl carrier protein: overproduction and phosphopantetheinylation in Escherichia coli BL21(DE3), in vitro acylation, and enzymatic desaturation of histidine-tagged isoform I. Protein Expr. Purif. 15, 314–326 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Olivares, J.A. Inductively coupled plasma-mass spectrometry. Methods Enzymol. 158, 205–222 (1988).

    Article  CAS  PubMed  Google Scholar 

  53. Högbom, M. et al. A high throughput method for the detection of metalloproteins on a microgram scale. Mol. Cell. Proteomics 4, 827–834 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Thomas, J. & Cronan, J.E. The enigmatic acyl carrier protein phosphodiesterase of Escherichia coli: genetic and enzymological characterization. J. Biol. Chem. 280, 34675–34683 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Niehaus, T.D. et al. Genomic and experimental evidence for multiple metabolic functions in the RidA/YjgF/YER057c/UK114 (Rid) protein family. BMC Genomics 16, 382 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution--from diffraction images to an initial model in minutes. Acta Crystallogr. D Biol. Crystallogr. 62, 859–866 (2006).

    Article  PubMed  CAS  Google Scholar 

  57. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  58. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Leslie, A.G. The integration of macromolecular diffraction data. Acta Crystallogr. D Biol. Crystallogr. 62, 48–57 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Science Foundation grants MCB-1153413 and IOS-1025398 (to A.D.H.) and MCB-1153491 (to O.F.); by Genome Canada, the Ontario Genomics Institute (2009-OGI-ABC-1405), the Ontario Research Fund (ORF-GL2-01-004), and NSERC Strategic Network grant IBN (to A.F.Y.); by National Institutes of Health grant GM094585 and the US Department of Energy, Office of Biological and Environmental Research, contract DE-AC02-06CH11357 (to A.J.); and by the C.V. Griffin Sr. Foundation (to A.D.H.). J.S. was supported by US Department of Energy, Office of Basic Energy Sciences, grant DOE KC0304000. We thank J.E. Cronan and H.W. Park for enzymes, K. Kodama of Ikeda Corp. of America for pantetheine-S-sulfonate, S. Gerdes for bioinformatic help, E. van Schaftingen for advice on metabolism, and J.D. Rabinowitz for pilot metabolomics.

Author information

Authors and Affiliations

Authors

Contributions

A.D.H. and A.F.Y. conceived the project. K.B., R.Z., V.d.C.-L., and A.D.H. made comparative genomic analyses. L.H., A.K., G.B., R.F., M.J.Z., J.S., and J.F.G. carried out biochemical experiments. O.F. performed metabolomics analyses. H.C., A.J., B.N., P.P., A.S., and X.X. performed crystallographic studies. A.D.H., L.H., and A.F.Y. wrote the manuscript.

Corresponding authors

Correspondence to Alexander F Yakunin or Andrew D Hanson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–7 and Supplementary Figures 1–11. (PDF 1938 kb)

Supplementary Data Set 1

Untargeted metabolomics analysis of yeast wild type and YMR027W deletion strains. (XLSX 333 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Khusnutdinova, A., Nocek, B. et al. A family of metal-dependent phosphatases implicated in metabolite damage-control. Nat Chem Biol 12, 621–627 (2016). https://doi.org/10.1038/nchembio.2108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing