Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation

Abstract

N6-methyladenosine (m6A) is the most prevalent and reversible internal modification in mammalian messenger and noncoding RNAs. We report here that human methyltransferase-like 14 (METTL14) catalyzes m6A RNA methylation. Together with METTL3, the only previously known m6A methyltransferase, these two proteins form a stable heterodimer core complex of METTL3–METTL14 that functions in cellular m6A deposition on mammalian nuclear RNAs. WTAP, a mammalian splicing factor, can interact with this complex and affect this methylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: METTL3, METTL14 and WTAP affect the cellular m6A level in polyadenylated RNA with METTL3 and METTL14 forming a stable complex.
Figure 2: In vitro methylation activity of METTL3, METTL14 and WTAP.
Figure 3: Identification of RNA-binding sites of METTL3 and METTL14 and a schematic illustration for nuclear RNA N6-adenosine methylation.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Bokar, J.A. in Fine-Tuning of RNA Functions by Modification and Editing Vol. 12 (ed. Grosjean, H.), 141–177 (Springer-Verlag, Berlin Heidelberg, 2005).

    Book  Google Scholar 

  2. Jia, G., Fu, Y. & He, C. Trends Genet. 29, 108–115 (2013).

    Article  CAS  Google Scholar 

  3. Motorin, Y. & Helm, M. Wiley Interdiscip. Rev. RNA 2, 611–631 (2011).

    Article  CAS  Google Scholar 

  4. Beemon, K. & Keith, J.J. Mol. Biol. 113, 165–179 (1977).

    Article  CAS  Google Scholar 

  5. Jia, G. et al. Nat. Chem. Biol. 7, 885–887 (2011).

    Article  CAS  Google Scholar 

  6. Zheng, G. et al. Mol. Cell 49, 18–29 (2013).

    Article  CAS  Google Scholar 

  7. Dominissini, D. et al. Nature 485, 201–206 (2012).

    Article  CAS  Google Scholar 

  8. Meyer, K.D. et al. Cell 149, 1635–1646 (2012).

    Article  CAS  Google Scholar 

  9. Bokar, J.A., Shambaugh, M.E., Polayes, D., Matera, A.G. & Rottman, F.M. RNA 3, 1233–1247 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Clancy, M.J., Shambaugh, M.E., Timpte, C.S. & Bokar, J.A. Nucleic Acids Res. 30, 4509–4518 (2002).

    Article  CAS  Google Scholar 

  11. Hongay, C.F. & Orr-Weaver, T.L. Proc. Natl. Acad. Sci. USA 108, 14855–14860 (2011).

    Article  CAS  Google Scholar 

  12. Zhong, S. et al. Plant Cell 20, 1278–1288 (2008).

    Article  CAS  Google Scholar 

  13. Bujnicki, J.M., Feder, M., Radlinska, M. & Blumenthal, R.M.J. J. Mol. Evol. 55, 431–444 (2002).

    Article  CAS  Google Scholar 

  14. Horiuchi, K. et al. Proc. Natl. Acad. Sci. USA 103, 17278–17283 (2006).

    Article  CAS  Google Scholar 

  15. Agarwala, S.D., Blitzblau, H.G., Hochwagen, A. & Fink, G.R. PLoS Genet. 8, e1002732 (2012).

    Article  CAS  Google Scholar 

  16. Bokar, J.A., Rath-Shambaugh, M.E., Ludwiczak, R., Narayan, P. & Rottman, F. J. Biol. Chem. 269, 17697–17704 (1994).

    CAS  PubMed  Google Scholar 

  17. Hafner, M. et al. Cell 141, 129–141 (2010).

    Article  CAS  Google Scholar 

  18. Wang, X. et al. Nature doi:10.1038/nature12730 (27 November 2013).

  19. Fustin, J.-M. et al. Cell 155, 793–806 (2013).

    Article  CAS  Google Scholar 

  20. Yu, M. et al. Nat. Protoc. 7, 2159–2170 (2012).

    Article  CAS  Google Scholar 

  21. Kane, S.E. & Beemon, K. Mol. Cell. Biol. 5, 2298–2306 (1985).

    Article  CAS  Google Scholar 

  22. Bolte, S. & Cordelières, F.P. J. Microsc. 224, 213–232 (2006).

    Article  CAS  Google Scholar 

  23. Hafner, M. et al. J. Vis. Exp. 41, e2034 (2010).

    Google Scholar 

  24. Dominissini, D. et al. Nat. Protoc. 8, 176–189 (2013).

    Article  CAS  Google Scholar 

  25. Ascano, M. et al. Nature 492, 382–386 (2012).

    Article  CAS  Google Scholar 

  26. Zhang, Y. et al. Genome Biol. 9, R137 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by US National Institutes of Health (GM071440 and GM088599). We thank P. Faber and L. Dore for helping with high-throughput sequencing experiments and S.F. Reichard for editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.H. conceived the project. J.L. and Y.Y. designed and performed most experiments. D.H. and Z.L. performed high-throughput sequencing data analyses. X.W. and Y.F. helped perform the PAR-CLIP experiment, biochemistry assay and data analysis. L.Z. and M.Y. assisted in expressing recombinant proteins in insect cells. G.J. and W.C. participated in subcloning. X.D. participated in nuclear extract separation. Q.D. synthesized the d3-m6A standard for LC/MS/MS analysis. J.L., Y.Y. and C.H. wrote the manuscript.

Corresponding author

Correspondence to Chuan He.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–15, Supplementary Tables 1–12 and Supplementary Notes 1–4. (PDF 3479 kb)

Supplementary Data Set 1

Summary of METTL3 target genes based on 4SU-PAR-CLIP (XLSX 298 kb)

Supplementary Data Set 2

Summary of METTL14 target genes based on 4SU-PAR-CLIP (XLSX 202 kb)

Supplementary Data Set 3

Summary of WTAP target genes based on 4SU-PAR-CLIP (XLSX 312 kb)

Supplementary Data Set 4

Summary of m6A peaks that show statistically significant decrease in the m6A-IP/input ratio upon METTL3 knockdown (P < 0.05) (XLSX 137 kb)

Supplementary Data Set 5

Summary of m6A peaks that show statistically significant decrease in the m6A-IP/input ratio upon METTL14 knockdown (P < 0.05) (XLSX 45 kb)

Supplementary Data Set 6

Summary of m6A peaks that show statistically significant decrease in the m6A-IP/input ratio upon WTAP knockdown (P < 0.05) (XLSX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Yue, Y., Han, D. et al. A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 10, 93–95 (2014). https://doi.org/10.1038/nchembio.1432

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1432

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing