Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

C/EBPa controls acquisition and maintenance of adult haematopoietic stem cell quiescence

Abstract

In blood, the transcription factor C/EBPa is essential for myeloid differentiation and has been implicated in regulating self-renewal of fetal liver haematopoietic stem cells (HSCs). However, its function in adult HSCs has remained unknown. Here, using an inducible knockout model we found that C/EBPa-deficient adult HSCs underwent a pronounced increase in number with enhanced proliferation, characteristics resembling fetal liver HSCs. Consistently, transcription profiling of C/EBPa-deficient HSCs revealed a gene expression program similar to fetal liver HSCs. Moreover, we observed that age-specific Cebpa expression correlated with its inhibitory effect on the HSC cell cycle. Mechanistically we identified N-Myc as a downstream target of C/EBPa, and loss of C/EBPa resulted in de-repression of N-Myc. Our data establish C/EBPa as a central determinant in the switch from fetal to adult HSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of C/EBPa increases the number of phenotypic and functional HSCs.
Figure 2: Increase in cell number in the HSC pool following loss of C/EBPa is haematopoietic cell intrinsic.
Figure 3: Loss of C/EBPa increases HSC proliferation.
Figure 4: Loss of C/EBPa in adult HSCs results in transcriptional alterations that resemble fetal liver HSCs.
Figure 5: Upregulation of C/EBPa limits HSC proliferation.
Figure 6: N-Myc is a downstream target of C/EBPa that mediates its regulation of HSC proliferation during fetal-to-adult transition.
Figure 7: C/EBPa plays a key role in regulating acquisition and maintenance of adult HSC quiescence.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Morrison, S. J., Hemmati, H. D., Wandycz, A. M. & Weissman, I. L. The purification and characterization of fetal liver hematopoietic stem cells. Proc. Natl Acad. Sci. USA 92, 10302–10306 (1995).

    Article  CAS  Google Scholar 

  2. Ema, H. & Nakauchi, H. Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood 95, 2284–2288 (2000).

    CAS  PubMed  Google Scholar 

  3. Morrison, S. J. & Weissman, I. L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661–673 (1994).

    Article  CAS  Google Scholar 

  4. Goodell, M. A., Brose, K., Paradis, G., Conner, A. S. & Mulligan, R. C. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183, 1797–1806 (1996).

    Article  CAS  Google Scholar 

  5. Cheshier, S. H., Morrison, S. J., Liao, X. & Weissman, I. L. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl Acad. Sci. USA 96, 3120–3125 (1999).

    Article  CAS  Google Scholar 

  6. Passegue, E., Wagers, A. J., Giuriato, S., Anderson, W. C. & Weissman, I. L. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J. Exp. Med. 202, 1599–1611 (2005).

    Article  CAS  Google Scholar 

  7. Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008).

    Article  CAS  Google Scholar 

  8. Bowie, M. B. et al. Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J. Clin. Invest. 116, 2808–2816 (2006).

    Article  CAS  Google Scholar 

  9. Harrison, D. E., Zhong, R. K., Jordan, C. T., Lemischka, I. R. & Astle, C. M. Relative to adult marrow, fetal liver repopulates nearly five times more effectively long-term than short-term. Exp. Hematol. 25, 293–297 (1997).

    CAS  PubMed  Google Scholar 

  10. Bowie, M. B. et al. Identification of a new intrinsically timed developmental checkpoint that reprograms key hematopoietic stem cell properties. Proc. Natl Acad. Sci. USA 104, 5878–5882 (2007).

    Article  CAS  Google Scholar 

  11. Kim, I., Saunders, T. L. & Morrison, S. J. Sox17 dependence distinguishes the transcriptional regulation of fetal from adult hematopoietic stem cells. Cell 130, 470–483 (2007).

    Article  CAS  Google Scholar 

  12. Park, I. K. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305 (2003).

    Article  CAS  Google Scholar 

  13. Hock, H. et al. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 431, 1002–1007 (2004).

    Article  CAS  Google Scholar 

  14. Hock, H. et al. Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. Genes Dev. 18, 2336–2341 (2004).

    Article  CAS  Google Scholar 

  15. Johnson, P. F. Molecular stop signs: regulation of cell-cycle arrest by C/EBP transcription factors. J. Cell Sci. 118, 2545–2555 (2005).

    Article  CAS  Google Scholar 

  16. Nerlov, C. The C/EBP family of transcription factors: a paradigm for interaction between gene expression and proliferation control. Trends Cell Biol. 17, 318–324 (2007).

    Article  CAS  Google Scholar 

  17. McKnight, S. L. McBindall–a better name for CCAAT/enhancer binding proteins? Cell 107, 259–261 (2001).

    Article  CAS  Google Scholar 

  18. Zhang, D. E. et al. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein α-deficient mice. Proc. Natl Acad. Sci. USA 94, 569–574 (1997).

    Article  CAS  Google Scholar 

  19. Zhang, P. et al. Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP α. Immunity 21, 853–863 (2004).

    Article  CAS  Google Scholar 

  20. Pabst, T. et al. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein- α (C/EBPα), in acute myeloid leukemia. Nat. Genet. 27, 263–270 (2001).

    Article  CAS  Google Scholar 

  21. Wouters, B. J. et al. Distinct gene expression profiles of acute myeloid/T-lymphoid leukemia with silenced CEBPA and mutations in NOTCH1. Blood 110, 3706–3714 (2007).

    Article  CAS  Google Scholar 

  22. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C. & Morrison, S. J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  Google Scholar 

  23. Kim, I., He, S., Yilmaz, O. H., Kiel, M. J. & Morrison, S. J. Enhanced purification of fetal liver hematopoietic stem cells using SLAM family receptors. Blood 108, 737–744 (2006).

    Article  CAS  Google Scholar 

  24. Szilvassy, S. J., Humphries, R. K., Lansdorp, P. M., Eaves, A. C. & Eaves, C. J. Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc. Natl Acad. Sci. USA 87, 8736–8740 (1990).

    Article  CAS  Google Scholar 

  25. Essers, M. A. et al. IFNα activates dormant haematopoietic stem cells in vivo. Nature 458, 904–908 (2009).

    Article  CAS  Google Scholar 

  26. Venezia, T. A. et al. Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS Biol. 2, e301 (2004).

    Article  Google Scholar 

  27. He, S., Kim, I., Lim, M. S. & Morrison, S. J. Sox17 expression confers self-renewal potential and fetal stem cell characteristics upon adult hematopoietic progenitors. Genes Dev. 25, 1613–1627 (2011).

    Article  CAS  Google Scholar 

  28. Laurenti, E. et al. Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity. Cell Stem Cell 3, 611–624 (2008).

    Article  CAS  Google Scholar 

  29. Bowie, M. B., Kent, D. G., Copley, M. R. & Eaves, C. J. Steel factor responsiveness regulates the high self-renewal phenotype of fetal hematopoietic stem cells. Blood 109, 5043–5048 (2007).

    Article  CAS  Google Scholar 

  30. Iwama, A. et al. Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 21, 843–851 (2004).

    Article  CAS  Google Scholar 

  31. Ikuta, K. et al. A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells. Cell 62, 863–874 (1990).

    Article  CAS  Google Scholar 

  32. Kikuchi, K. & Kondo, M. Developmental switch of mouse hematopoietic stem cells from fetal to adult type occurs in bone marrow after birth. Proc. Natl Acad. Sci. USA 103, 17852–17857 (2006).

    Article  CAS  Google Scholar 

  33. Meyer, N. & Penn, L. Z. Reflecting on 25 years with MYC. Nat. Rev. Cancer 8, 976–990 (2008).

    Article  CAS  Google Scholar 

  34. Freytag, S. O. & Geddes, T. J. Reciprocal regulation of adipogenesis by Myc and C/EBP α. Science 256, 379–382 (1992).

    Article  CAS  Google Scholar 

  35. Johansen, L. M. et al. c-Myc is a critical target for c/EBPα in granulopoiesis. Mol. Cell Biol. 21, 3789–3806 (2001).

    Article  CAS  Google Scholar 

  36. Sawai, S. et al. Defects of embryonic organogenesis resulting from targeted disruption of the N-myc gene in the mouse. Development 117, 1445–1455 (1993).

    CAS  PubMed  Google Scholar 

  37. Stanton, B. R., Perkins, A. S., Tessarollo, L., Sassoon, D. A. & Parada, L. F. Loss of N-myc function results in embryonic lethality and failure of the epithelial component of the embryo to develop. Genes Dev. 6, 2235–2247 (1992).

    Article  CAS  Google Scholar 

  38. Hirai, H. et al. C/EBPβ is required for ‘emergency’ granulopoiesis. Nat. Immunol. 7, 732–229 (2006).

    Article  CAS  Google Scholar 

  39. Santaguida, M. et al. JunB protects against myeloid malignancies by limiting hematopoietic stem cell proliferation and differentiation without affecting self-renewal. Cancer Cell 15, 341–352 (2009).

    Article  CAS  Google Scholar 

  40. Irizarry, R. A., Ooi, S. L., Wu, Z. & Boeke, J. D. Use of mixture models in a microarray-based screening procedure for detecting differentially represented yeast mutants. Stat. Appl. Genet Mol. Biol. 2, 1 (2003).

    Article  Google Scholar 

  41. Chua, S. W. et al. A novel normalization method for effective removal of systematic variation in microarray data. Nucl. Acids Res. 34, e38 (2006).

    Article  Google Scholar 

  42. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Institutes of Health grant HL 56745 and the Harvard Stem Cell Institute grant DP-0086-10-00. G.A. was supported by the Collegio Ghislieri Fellowship Program. E.L. was supported by FAMRI YCSA and CIA grants. P.B.S. was supported by the Austrian Research Foundation and the European Union. D.G.T. is supported by the Singapore Ministry of Health’s National Medical Research Council under its Singapore Translational Research (STaR) Investigator Award. We thank all members of the Tenen laboratory for helpful discussions; R. Welner, C. Bach, H. Xie, M. Stadtfeld, T. Graf and X. Guo for careful reading of the manuscript and suggestions; J. LaVecchio and G. Buruzula from the Harvard Stem Cell Institute/Joslin Diabetes Center flow cytometry facility for their expertise during cell sorting; and A. T. Lay Keng and L. M. Hui from the NUS-Duke genomic facility in Singapore for their expertise in microarray analysis.

Author information

Authors and Affiliations

Authors

Contributions

M.Y. and D.G.T. designed the study; M.Y., H.Z., G.A., H.Y., P.Z., E.L., P.B.S., J.Z. and M.A.J. performed research; M.Y., H.Z., H.Y. and P.Z. analysed data; M.Y., H.Z. and D.G.T. wrote the paper.

Corresponding author

Correspondence to Daniel G. Tenen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1194 kb)

Supplementary Table 1

Supplementary Information (XLS 76 kb)

Supplementary Table 2

Supplementary Information (XLS 68 kb)

Supplementary Table 3

Supplementary Information (XLS 68 kb)

Supplementary Table 4

Supplementary Information (XLS 391 kb)

Supplementary Table 5

Supplementary Information (XLS 30 kb)

Supplementary Table 6

Supplementary Information (XLS 18 kb)

Supplementary Table 7

Supplementary Information (XLS 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, M., Zhang, H., Amabile, G. et al. C/EBPa controls acquisition and maintenance of adult haematopoietic stem cell quiescence. Nat Cell Biol 15, 385–394 (2013). https://doi.org/10.1038/ncb2698

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2698

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing