Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rab10 GTPase regulates ER dynamics and morphology

Abstract

We have identified Rab10 as an ER-specific Rab GTPase that regulates ER structure and dynamics. We show that Rab10 localizes to the ER and to dynamic ER-associated structures that track along microtubules and mark the position of new ER tubule growth. Rab10 depletion or expression of a Rab10 GDP-locked mutant alters ER morphology, resulting in fewer ER tubules. We demonstrate that this defect is due to a reduced ability of dynamic ER tubules to grow out and successfully fuse with adjacent ER. Consistent with this function, Rab10 partitions to dynamic ER-associated domains found at the leading edge of almost half of all dynamic ER tubules. Interestingly, this Rab10 domain is highly enriched with at least two ER enzymes that regulate phospholipid synthesis, phosphatidylinositol synthase (PIS) and CEPT1. Both the formation and function of this Rab10/PIS/CEPT1 dynamic domain are inhibited by expression of a GDP-locked Rab10 mutant. Together, these data demonstrate that Rab10 regulates ER dynamics and further suggest that these dynamics could be coupled to phospholipid synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purification of GTP-binding proteins from a X. laevis in vitro ER assembly assay.
Figure 2: Rab10 localizes to the ER and regulates tubular ER morphology.
Figure 3: Depletion of endogenous Rab10 reduces tubular ER morphology.
Figure 4: Rab10 regulates ER tubule dynamics and fusion.
Figure 5: Rab10 and PIS co-localize to the leading edge of dynamic ER tubules.
Figure 6: CEPT1 and PIS partition with Rab10 to ER-associated dynamic domains.
Figure 7: Rab10 regulates the formation of Rab10/PIS/CEPT1 dynamic puncta.
Figure 8: Atlastin and Rab10 do not overlap in function or location.

Similar content being viewed by others

References

  1. Lee, C. & Chen, L. B. Dynamic behaviour of endoplasmic reticulum in living cells. Cell 54, 37–46 (1988).

    Article  CAS  Google Scholar 

  2. Terasaki, M., Chen, L. B. & Fujiwara, K. Microtubules and the endoplasmic reticulum are highly interdependent structures. J. Cell Biol. 103, 1557–1568 (1986).

    Article  CAS  Google Scholar 

  3. Waterman-Storer, C. M. & Salmon, E. D. Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms. Curr. Biol. 8, 798–806 (1998).

    Article  CAS  Google Scholar 

  4. English, A. R., Zurek, N. & Voeltz, G. K. Peripheral ER structure and function. Curr. Opin. Cell Biol. 21, 596–602 (2009).

    Article  CAS  Google Scholar 

  5. Hu, J. et al. A class of dynamin-like GTPases involved in the generation of the tubular ER network. Cell 138, 549–561 (2009).

    Article  CAS  Google Scholar 

  6. Orso, G. et al. Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature 460, 978–983 (2009).

    Article  CAS  Google Scholar 

  7. Rismanchi, N., Soderblom, C., Stadler, J., Zhu, P. P. & Blackstone, C. Atlastin GTPases are required for Golgi apparatus and ER morphogenesis. Hum. Mol. Genet. 17, 1591–1604 (2008).

    Article  CAS  Google Scholar 

  8. Murray, J. T., Panaretou, C., Stenmark, H., Miaczynska, M. & Backer, J. M. Role of Rab5 in the recruitment of hVps34/p150 to the early endosome. Traffic 3, 416–427 (2002).

    Article  CAS  Google Scholar 

  9. Behnia, R. & Munro, S. Organelle identity and the signposts for membrane traffic. Nature 438, 597–604 (2005).

    Article  CAS  Google Scholar 

  10. Pfeffer, S. R. Rab GTPases: specifying and deciphering organelle identity and function. Trends Cell Biol. 11, 487–491 (2001).

    Article  CAS  Google Scholar 

  11. Cai, H., Reinisch, K. & Ferro-Novick, S. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell 12, 671–682 (2007).

    Article  CAS  Google Scholar 

  12. Schwartz, S. L., Cao, C., Pylypenko, O., Rak, A. & Wandinger-Ness, A. Rab GTPases at a glance. J. Cell Sci. 120, 3905–3910 (2007).

    Article  CAS  Google Scholar 

  13. Turner, M. D., Plutner, H. & Balch, W.E. A Rab GTPase is required forhomotypic assembly of the endoplasmic reticulum. J. Biol. Chem. 272, 13479–13483 (1997).

    Article  CAS  Google Scholar 

  14. Audhya, A., Desai, A. & Oegema, K. A role for Rab5 in structuring the endoplasmic reticulum. J. Cell Biol. 178, 43–56 (2007).

    Article  CAS  Google Scholar 

  15. Dreier, L. & Rapoport, T. A. In vitro formation of the endoplasmic reticulum occurs independently of microtubules by a controlled fusion reaction. J. Cell Biol. 148, 883–898 (2000).

    Article  CAS  Google Scholar 

  16. Voeltz, G. K., Prinz, W. A., Shibata, Y., Rist, J. M. & Rapoport, T. A. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124, 573–586 (2006).

    Article  CAS  Google Scholar 

  17. Bucci, C., Thomsen, P., Nicoziani, P., McCarthy, J. & van Deurs, B. Rab7: a key to lysosome biogenesis. Mol. Biol. Cell 11, 467–480 (2000).

    Article  CAS  Google Scholar 

  18. Bucci, C. et al. Co-operative regulation of endocytosis by three Rab5 isoforms. FEBS Lett. 366, 65–71 (1995).

    Article  CAS  Google Scholar 

  19. Ullrich, O., Reinsch, S., Urbe, S., Zerial, M. & Parton, R. G. Rab11 regulates recycling through the pericentriolar recycling endosome. J. Cell Biol. 135, 913–924 (1996).

    Article  CAS  Google Scholar 

  20. Chen, W. & Wandinger-Ness, A. Expression and functional analyses of Rab8 and Rab11a in exocytic transport from trans-Golgi network. Methods Enzymol. 329, 165–175 (2001).

    Article  CAS  Google Scholar 

  21. Schuck, S. et al. Rab10 is involved in basolateral transport in polarized Madin-Darby canine kidney cells. Traffic 8, 47–60 (2007).

    Article  CAS  Google Scholar 

  22. Shi, A. et al. EHBP-1 functions with RAB-10 during endocytic recycling in Caenorhabditis elegans. Mol. Biol. Cell 21, 2930–2943 (2010).

    Article  CAS  Google Scholar 

  23. Chen, C. C. et al. RAB-10 is required for endocytic recycling in the Caenorhabditis elegans intestine. Mol. Biol. Cell 17, 1286–1297 (2006).

    Article  CAS  Google Scholar 

  24. Stenmark, H. et al. Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J. 13, 1287–1296 (1994).

    Article  CAS  Google Scholar 

  25. Shibata, Y. et al. Mechanisms determining the morphology of the peripheral ER. Cell 143, 774–788 (2010).

    Article  CAS  Google Scholar 

  26. Anderson, D. J. & Hetzer, M. W. Reshaping of the endoplasmic reticulum limits the rate for nuclear envelope formation. J. Cell Biol. 182, 911–924 (2008).

    Article  CAS  Google Scholar 

  27. Friedman, J. R., Webster, B. M., Mastronarde, D. N., Verhey, K. J. & Voeltz, G. K. ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules. J. Cell Biol. 190, 363–375 (2010).

    Article  CAS  Google Scholar 

  28. Kim, Y. J., Guzman-Hernandez, M. L. & Balla, T. A highly dynamic ER-derived phosphatidylinositol-synthesizing organelle supplies phosphoinositides to cellular membranes. Dev. Cell 21, 813–824 (2011).

    Article  CAS  Google Scholar 

  29. Fagone, P. & Jackowski, S. Membrane phospholipid synthesis and endoplasmic reticulum function. J. Lipid Res. 50, S311–S316 (2009).

    Article  Google Scholar 

  30. Henneberry, A. L., Wright, M. M. & McMaster, C. R. The major sites of cellular phospholipid synthesis and molecular determinants of Fatty Acid and lipid head group specificity. Mol. Biol. Cell 13, 3148–3161 (2002).

    Article  CAS  Google Scholar 

  31. French, A. P., Mills, S., Swarup, R., Bennett, M. J. & Pridmore, T. P. Colocalization of fluorescent markers in confocal microscope images of plant cells. Nat. Protoc. 3, 619–628 (2008).

    Article  CAS  Google Scholar 

  32. Park, S. H., Zhu, P. P., Parker, R. L. & Blackstone, C. Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. J. Clin. Invest. 120, 1097–1110 (2010).

    Article  CAS  Google Scholar 

  33. Chen, S., Novick, P. & Ferro-Novick, S. ER network formation requires a balance of the dynamin-like GTPase Sey1p and the Lunapark family member Lnp1p. Nat. Cell Biol. (2012).

  34. Wenk, M. R. & De Camilli, P. Protein-lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals. Proc. Natl Acad. Sci. USA 101, 8262–8269 (2004).

    Article  CAS  Google Scholar 

  35. Zurek, N., Sparks, L. & Voeltz, G. Reticulon short hairpin transmembrane domains are used to shape ER tubules. Traffic 12, 28–41 (2011).

    Article  CAS  Google Scholar 

  36. Sahooa, P. K. & Arorab, G. A thresholding method based on two-dimensional Renyi’s entropy. Pattern Recognition 37, 1149–1161 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. English for helpful suggestions, A. Merz (University of Washington, USA) for generously providing Rab GDI, and E. Snapp, T. Lee and J. Friedman for constructs. This work was supported by NIH grants GM083977 to G.K.V. and GM07135 to A.R.E.

Author information

Authors and Affiliations

Authors

Contributions

G.K.V. and A.R.E. designed the experiments and wrote the manuscript. A.R.E. performed the experiments and data analysis.

Corresponding author

Correspondence to Gia K. Voeltz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1302 kb)

Supplementary Table 1

Supplementary Information (XLSX 95 kb)

Supplementary Table 2

Supplementary Information (XLSX 37 kb)

Supplementary Table 3

Supplementary Information (XLSX 53 kb)

Supplementary Table 4

Supplementary Information (XLSX 54 kb)

Supplementary Table 5

Supplementary Information (XLSX 36 kb)

Supplementary Table 6

Supplementary Information (XLSX 12 kb)

Supplementary Table 7

Supplementary Information (XLSX 27 kb)

Supplementary Table 8

Supplementary Information (XLSX 11 kb)

Supplementary Table 9

Supplementary Information (XLSX 11 kb)

Supplementary Table 10

Supplementary Information (XLSX 10 kb)

Relative localization over time of Rab10 WT and an ER luminal protein.

Cos-7 cells expressing mCh-Rab10 WT and KDEL-venus (Rab10 WT, red; KDEL, green) were imaged live by confocal fluorescence microscopy. Scale bar, 10 μm. (AVI 9988 kb)

Relative localization of PIS, Rab10 WT and an ER luminal protein.

Cos-7 cells co-expressing mCh-PIS, BFP-Rab10 WT and KDEL-venus (PIS, red; Rab10 WT, blue; KDEL, green) were imaged live by confocal fluorescence microscopy. Scale bar, 10 μm. (AVI 23812 kb)

Relative localization of Rab10 WT, CEPT1 and PIS

Cos-7 cells co-expressing BFP-Rab10 WT, mCh-CEPT1 and GFP-PIS (Rab10 WT, blue; CEPT1, red, GFP, green) were imaged live by confocal fluorescence microscopy. Scale bar, 10 μm. (AVI 9988 kb)

Relative localization and structure of the ER in cells expressing Rab10 T23N, CEPT1 and PIS

Cos-7 cells co-expressing BFP-Rab10 T23N, mCh-CEPT1 and GFP-PIS (Rab10 T23N, blue; CEPT1, red, GFP, green) were imaged live by confocal fluorescence microscopy. Scale bar, 10 μm. (AVI 9988 kb)

Relative localization of PIS, Rab10 WT and Atl3 puncta

Cos-7 cells expressing mCh-PIS, BFP-Rab10 WT and GFP-Atl3 (mCh-PIS, red; BFPRab10 WT, blue; GFP-Atl3, green) were imaged live by confocal fluorescence microscopy. Scale bar, 10 μm. (AVI 14596 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

English, A., Voeltz, G. Rab10 GTPase regulates ER dynamics and morphology. Nat Cell Biol 15, 169–178 (2013). https://doi.org/10.1038/ncb2647

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2647

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing