Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Collective cell migration requires suppression of actomyosin at cell–cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6

Abstract

Collective cell migration occurs in a range of contexts: cancer cells frequently invade in cohorts while retaining cell–cell junctions. Here we show that collective invasion by cancer cells depends on decreasing actomyosin contractility at sites of cell–cell contact. When actomyosin is not downregulated at cell–cell contacts, migrating cells lose cohesion. We provide a molecular mechanism for this downregulation. Depletion of discoidin domain receptor 1 (DDR1) blocks collective cancer-cell invasion in a range of two-dimensional, three-dimensional and 'organotypic' models. DDR1 coordinates the Par3/Par6 cell-polarity complex through its carboxy terminus, binding PDZ domains in Par3 and Par6. The DDR1–Par3/Par6 complex controls the localization of RhoE to cell–cell contacts, where it antagonizes ROCK-driven actomyosin contractility. Depletion of DDR1, Par3, Par6 or RhoE leads to increased actomyosin contactility at cell–cell contacts, a loss of cell–cell cohesion and defective collective cell invasion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DDR1 is required for collective cell migration.
Figure 2: DDR1 does not require kinase activity or collagen binding to regulate actomyosin at cell contacts.
Figure 3: DDR1 interacts with Par3 and Par 6.
Figure 4: Par3 and Par6 are required for efficient collective invasion.
Figure 5: DDR1 controls RhoE localization at cell–cell contacts.
Figure 6: Actomyosin organization in collective cell migration.

Similar content being viewed by others

References

  1. Friedl, P., Hegerfeldt, Y. & Tusch, M. Collective cell migration in morphogenesis and cancer. Int. J. Dev. Biol. 48, 441–449 (2004).

    Article  CAS  Google Scholar 

  2. Friedl, P. & Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10, 445–457 (2009).

    Article  CAS  Google Scholar 

  3. DiCostanzo, D., Rosen, P. P., Gareen, I., Franklin, S. & Lesser, M. Prognosis in infiltrating lobular carcinoma. An analysis of 'classical' and variant tumors. Am. J. Surg. Pathol. 14, 12–23 (1990).

    Article  CAS  Google Scholar 

  4. Yamamoto, E., Kohama, G., Sunakawa, H., Iwai, M. & Hiratsuka, H. Mode of invasion, bleomycin sensitivity, and clinical course in squamous cell carcinoma of the oral cavity. Cancer 51, 2175–2180 (1983).

    Article  CAS  Google Scholar 

  5. Wolf, K. et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol. 9, 893–904 (2007).

    Article  CAS  Google Scholar 

  6. Gaggioli, C. et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 9, 1392–1400 (2007).

    Article  CAS  Google Scholar 

  7. Hooper, S., Gaggioli, C. & Sahai, E. A chemical biology screen reveals a role for Rab21-mediated control of actomyosin contractility in fibroblast-driven cancer invasion. Br. J. Cancer 102, 392–402 (2010).

    Article  CAS  Google Scholar 

  8. Scott, R. W. et al. LIM kinases are required for invasive path generation by tumor and tumor-associated stromal cells. J. Cell Biol. 191, 169–185 (2010).

    Article  CAS  Google Scholar 

  9. Lemmon, M. A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).

    Article  CAS  Google Scholar 

  10. Shattil, S. J., Kim, C. & Ginsberg, M. H. The final steps of integrin activation: the end game. Nat. Rev. Mol. Cell Biol. 11, 288–300 (2010).

    Article  CAS  Google Scholar 

  11. Gumbiner, B. M. Regulation of cadherin-mediated adhesion in morphogenesis. Nat. Rev. Mol. Cell Biol. 6, 622–634 (2005).

    Article  CAS  Google Scholar 

  12. Johnson, J. D., Edman, J. C. & Rutter, W. J. A receptor tyrosine kinase found in breast carcinoma cells has an extracellular discoidin I-like domain. Proc. Natl Acad. Sci. USA 90, 5677–5681 (1993).

    Article  CAS  Google Scholar 

  13. Vogel, W., Gish, G. D., Alves, F. & Pawson, T. The discoidin domain receptor tyrosine kinases are activated by collagen. Mol. Cell 1, 13–23 (1997).

    Article  CAS  Google Scholar 

  14. Shrivastava, A. et al. An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Mol. Cell 1, 25–34 (1997).

    Article  CAS  Google Scholar 

  15. Wang, C. Z., Yeh, Y. C. & Tang, M. J. DDR1/E-cadherin complex regulates the activation of DDR1 and cell spreading. Am. J. Physiol. Cell Physiol. 297, C419–C429 (2009).

    Article  CAS  Google Scholar 

  16. Croft, D. R. et al. Conditional ROCK activation in vivo induces tumor cell dissemination and angiogenesis. Cancer Res. 64, 8994–9001 (2004).

    Article  CAS  Google Scholar 

  17. Simpson, K. J. et al. Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nat.Cell Biol. 10, 1027–1038 (2008).

    Article  CAS  Google Scholar 

  18. Zhang, J. et al. Actin at cell–cell junctions is composed of two dynamic and functional populations. J. Cell Sci. 118, 5549–5562 (2005).

    Article  CAS  Google Scholar 

  19. Leitinger, B. Molecular analysis of collagen binding by the human discoidin domain receptors, DDR1 and DDR2. Identification of collagen binding sites in DDR2. J. Biol. Chem. 278, 16761–16769 (2003).

    Article  CAS  Google Scholar 

  20. Vogel, W. et al. Discoidin domain receptor 1 is activated independently of β1 integrin. J. Biol. Chem. 275, 5779–5784 (2000).

    Article  CAS  Google Scholar 

  21. Abdulhussein, R., McFadden, C., Fuentes-Prior, P. & Vogel, W. F. Exploring the collagen-binding site of the DDR1 tyrosine kinase receptor. J. Biol. Chem. 279, 31462–31470 (2004).

    Article  CAS  Google Scholar 

  22. Itoh, M. et al. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J. Cell Biol. 147, 1351–1363 (1999).

    Article  CAS  Google Scholar 

  23. Goldstein, B. & Macara, I. G. The PAR proteins: fundamental players in animal cell polarization. Dev .Cell 13, 609–622 (2007).

    Article  CAS  Google Scholar 

  24. Izumi, Y. et al. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J. Cell Biol. 143, 95–106 (1998).

    Article  CAS  Google Scholar 

  25. Joberty, G., Petersen, C., Gao, L. & Macara, I. G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat. Cell Biol. 2, 531–539 (2000).

    Article  CAS  Google Scholar 

  26. Mertens, A. E., Rygiel, T. P., Olivo, C., van der Kammen, R. & Collard, J. G. The Rac activator Tiam1 controls tight junction biogenesis in keratinocytes through binding to and activation of the Par polarity complex. J. Cell Biol. 170, 1029–1037 (2005).

    Article  CAS  Google Scholar 

  27. Wildenberg, G. A. et al. p120-catenin and p190RhoGAP regulate cell–cell adhesion by coordinating antagonism between Rac and Rho. Cell 127, 1027–1039 (2006).

    Article  CAS  Google Scholar 

  28. Riento, K., Guasch, R. M., Garg, R., Jin, B. & Ridley, A. J. RhoE binds to ROCK I and inhibits downstream signaling. Mol. Cell. Biol. 23, 4219–4229 (2003).

    Article  CAS  Google Scholar 

  29. Pinner, S. & Sahai, E. PDK1 regulates cancer cell motility by antagonising inhibition of ROCK1 by RhoE. Nat. Cell Biol. 10, 127–137 (2008).

    Article  CAS  Google Scholar 

  30. Wennerberg, K. et al. Rnd proteins function as RhoA antagonists by activating p190 RhoGAP. Curr. Biol. 13, 1106–1115 (2003).

    Article  CAS  Google Scholar 

  31. Foster, R. et al. Identification of a novel human Rho protein with unusual properties: GTPase deficiency and in vivo farnesylation. Mol. Cell. Biol. 16, 2689–2699 (1996).

    Article  CAS  Google Scholar 

  32. Danjo, Y. & Gipson, I. K. Actin 'purse string' filaments are anchored by E-cadherin-mediated adherens junctions at the leading edge of the epithelial wound, providing coordinated cell movement. J. Cell Sci. 111, 3323–3332 (1998).

    CAS  PubMed  Google Scholar 

  33. Benink, H. A. & Bement, W. M. Concentric zones of active RhoA and Cdc42 around single cell wounds. J. Cell Biol. 168, 429–439 (2005).

    Article  CAS  Google Scholar 

  34. Wood, W. et al. Wound healing recapitulates morphogenesis in Drosophila embryos. Nat. Cell Biol. 4, 907–912 (2002).

    Article  CAS  Google Scholar 

  35. Carmona-Fontaine, C. et al. Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 456, 957–961 (2008).

    Article  CAS  Google Scholar 

  36. Sahin, M. et al. Eph-dependent tyrosine phosphorylation of ephexin1 modulates growth cone collapse. Neuron 46, 191–204 (2005).

    Article  CAS  Google Scholar 

  37. Dow, L. E. et al. The tumour-suppressor Scribble dictates cell polarity during directed epithelial migration: regulation of Rho GTPase recruitment to the leading edge. Oncogene 26, 2272–2282 (2007).

    Article  CAS  Google Scholar 

  38. Etienne-Manneville, S., Manneville, J. B., Nicholls, S., Ferenczi, M. A. & Hall, A. Cdc42 and Par6-PKCζ regulate the spatially localized association of Dlg1 and APC to control cell polarization. J. Cell Biol. 170, 895–901 (2005).

    Article  CAS  Google Scholar 

  39. Osmani, N., Vitale, N., Borg, J. P. & Etienne-Manneville, S. Scrib controls Cdc42 localization and activity to promote cell polarization during astrocyte migration. Curr. Biol. 16, 2395–2405 (2006).

    Article  CAS  Google Scholar 

  40. Schmoranzer, J. et al. Par3 and dynein associate to regulate local microtubule dynamics and centrosome orientation during migration. Curr. Biol. 19, 1065–1074 (2009).

    Article  CAS  Google Scholar 

  41. Pinheiro, E. M. & Montell, D. J. Requirement for Par-6 and Bazooka in Drosophila border cell migration. Development 131, 5243–5251 (2004).

    Article  CAS  Google Scholar 

  42. Zhang, H. & Macara, I. G. The PAR-6 polarity protein regulates dendritic spine morphogenesis through p190 RhoGAP and the Rho GTPase. Dev. Cell 14, 216–226 (2008).

    Article  Google Scholar 

  43. Riento, K., Villalonga, P., Garg, R. & Ridley, A. Function and regulation of RhoE. Biochem. Soc. Trans. 33, 649–651 (2005).

    Article  CAS  Google Scholar 

  44. Peacock, J. G. et al. The Abl-related gene tyrosine kinase acts through p190RhoGAP to inhibit actomyosin contractility and regulate focal adhesion dynamics upon adhesion to fibronectin. Mol. Biol. Cell 18, 3860–3872 (2007).

    Article  CAS  Google Scholar 

  45. Nakayama, M. et al. Rho-kinase phosphorylates PAR-3 and disrupts PAR complex formation. Dev. Cell 14, 205–215 (2008).

    Article  CAS  Google Scholar 

  46. Simões Sde, M. et al. Rho-kinase directs Bazooka/Par-3 planar polarity during Drosophila axis elongation. Dev. Cell 19, 377–388 (2010).

    Article  Google Scholar 

  47. Reynolds, A. B. p120-catenin: past and present. Biochim. Biophys. Acta 1773, 2–7 (2007).

    Article  CAS  Google Scholar 

  48. Schimanski, C. C. et al. Reduced expression of Hugl-1, the human homologue of Drosophila tumour suppressor gene lgl, contributes to progression of colorectal cancer. Oncogene 24, 3100–3109 (2005).

    Article  CAS  Google Scholar 

  49. Kuphal, S. et al. Expression of Hugl-1 is strongly reduced in malignant melanoma. Oncogene 25, 103–110 (2006).

    Article  CAS  Google Scholar 

  50. Gardiol, D., Zacchi, A., Petrera, F., Stanta, G. & Banks, L. Human discs large and scrib are localized at the same regions in colon mucosa and changes in their expression patterns are correlated with loss of tissue architecture during malignant progression. Int J Cancer 119, 1285–1290 (2006).

    Article  CAS  Google Scholar 

  51. Shimada, K. et al. Prostate cancer antigen-1 contributes to cell survival and invasion though discoidin receptor 1 in human prostate cancer. Cancer Sci. 99, 39–45 (2008).

    CAS  PubMed  Google Scholar 

  52. Huang, Y., Arora, P., McCulloch, C. A. & Vogel, W. F. The collagen receptor DDR1 regulates cell spreading and motility by associating with myosin IIA. J. Cell Sci. 122, 1637–1646 (2009).

    Article  CAS  Google Scholar 

  53. Rheinwald, J. G. & Beckett, M. A. Tumorigenic keratinocyte lines requiring anchorage and fibroblast support cultures from human squamous cell carcinomas. Cancer Res. 41, 1657–1663 (1981).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Cancer Research UK and EMBO for funding and B. Thompson, N. Tapon and lab members for comments and discussion. We also thank the Experimental Pathology lab for technical help.

Author information

Authors and Affiliations

Authors

Contributions

C.H.C. and E.S. conceived and designed the experiments. C.H.C. performed all experiments except Figs 1a, e and 5c, d, f. Supplementary Information, Figures S1, S2 and S5c were performed by E.S. Fig 4b and various molecular cloning procedures were performed by S.H. The clinical samples used in Supplementary Information, Figures S1 and S6 were collected by S.I.C., P.W. and K.H.

Corresponding author

Correspondence to Erik Sahai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1615 kb)

Supplementary Movie 1

Supplementary Information (AVI 8663 kb)

Supplementary Movie 2

Supplementary Information (AVI 9816 kb)

Supplementary Movie 3

Supplementary Information (AVI 5595 kb)

Supplementary Movie 4

Supplementary Information (AVI 5626 kb)

Supplementary Movie 5

Supplementary Information (AVI 2320 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hidalgo-Carcedo, C., Hooper, S., Chaudhry, S. et al. Collective cell migration requires suppression of actomyosin at cell–cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nat Cell Biol 13, 49–59 (2011). https://doi.org/10.1038/ncb2133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing