Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60

Abstract

DNA double-strand break (DSB) repair involves complex interactions between chromatin and repair proteins, including Tip60, a tumour suppressor1. Tip60 is an acetyltransferase that acetylates both histones2,3,4,5 and ATM (ataxia telangiectasia mutated) kinase6,7. Inactivation of Tip60 leads to defective DNA repair2,3,4 and increased cancer risk8,9,10,11. However, how DNA damage activates the acetyltransferase activity of Tip60 is not known. Here, we show that direct interaction between the chromodomain of Tip60 and histone H3 trimethylated on lysine 9 (H3K9me3) at DSBs activates the acetyltransferase activity of Tip60. Depletion of intracellular H3K9me3 blocks activation of the acetyltransferase activity of Tip60, resulting in defective ATM activation and widespread defects in DSB repair. In addition, the ability of Tip60 to access H3K9me3 is dependent on the DNA damage-induced displacement of HP1β (heterochromatin protein 1β) from H3K9me3. Finally, we demonstrate that the Mre11–Rad50–Nbs1 (MRN) complex targets Tip60 to H3K9me3, and is required to activate the acetyltransferase activity of Tip60. These results reveal a new function for H3K9me3 in coordinating activation of Tip60-dependent DNA repair pathways, and imply that aberrant patterns of histone methylation may contribute to cancer by altering the efficiency of DSB repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The chromodomain of Tip60 is required for its acetyltransferase activity.
Figure 2: MRN is essential for Tip60 activation.
Figure 3: The chromodomain of Tip60 interacts with H3K9me3 in vitro
Figure 4: Demethylation of H3K9 blocks activation of Tip60 acetyltransferase activity.
Figure 5: DNA damage regulates interaction between Tip60 and H3K9me3.

Similar content being viewed by others

References

  1. Squatrito, M., Gorrini, C. & Amati, B. Tip60 in DNA damage response and growth control: many tricks in one HAT. Trends Cell Biol. (2006).

  2. Bird, A. W. et al. Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419, 411–415 (2002).

    Article  CAS  Google Scholar 

  3. Downs, J. A. et al. Binding of Chromatin-Modifying Activities to Phosphorylated Histone H2A at DNA Damage Sites. Mol. Cell 16, 979–990 (2004).

    Article  CAS  Google Scholar 

  4. Murr, R. et al. Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nature Cell Biol. 8, 91–99 (2006).

    Article  CAS  Google Scholar 

  5. Kusch, T. et al. Acetylation by Tip60 Is Required for Selective Histone Variant Exchange at DNA Lesions. Science (2004).

  6. Sun, Y., Xu, Y., Roy., K. & Price, B. D. DNA damage-induced acetylation of lysine 3016 of ATM activates ATM kinase activity. Mol. Cell Biol. 27, 8502–8509 (2007).

    Article  CAS  Google Scholar 

  7. Sun, Y., Jiang, X., Chen, S., Fernandes, N. & Price, B. D. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc. Natl Acad. Sci. USA 102, 13182–13187 (2005).

    Article  CAS  Google Scholar 

  8. Gorrini, C. et al. Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 448, 1063–1067 (2007).

    Article  CAS  Google Scholar 

  9. ME, L. L. et al. New p53 related genes in human tumors: significant downregulation in colon and lung carcinomas. Oncol. Rep. 16, 603–608 (2006).

    Google Scholar 

  10. Kim, J. H. et al. Transcriptional regulation of a metastasis suppressor gene by Tip60 and β-catenin complexes. Nature 434, 921–926 (2005).

    Article  CAS  Google Scholar 

  11. Halkidou, K. et al. Expression of Tip60, an androgen receptor coactivator, and its role in prostate cancer development. Oncogene 22, 2466–2477 (2003).

    Article  CAS  Google Scholar 

  12. Jiang, X., Sun, Y., Chen, S., Roy., K. & Price, B. D. The FATC domains of PIKK proteins are functionally equivalent and participate in the Tip60-dependent activation of DNA-PKcs and ATM. J. Biol. Chem. 281, 15741–15746 (2006).

    Article  CAS  Google Scholar 

  13. Taverna, S. D., Li, H., Ruthenburg, A. J., Allis, C. D. & Patel, D. J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nature Struct. Mol. Biol. 14, 1025–1040 (2007).

    Article  CAS  Google Scholar 

  14. Jacobs, S. A. & Khorasanizadeh, S. Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295, 2080–2083 (2002).

    Article  CAS  Google Scholar 

  15. Nielsen, P. R. et al. Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416, 103–107 (2002).

    Article  CAS  Google Scholar 

  16. Uziel, T. et al. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 22, 5612–5621 (2003).

    Article  CAS  Google Scholar 

  17. Lee, J. H. & Paull, T. T. Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene 26, 7741–7748 (2007).

    Article  CAS  Google Scholar 

  18. Lee, J. H. & Paull, T. T. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308, 551–554 (2005).

    Article  CAS  Google Scholar 

  19. Zhong, H., Bryson, A., Eckersdorff, M. & Ferguson, D. O. Rad50 depletion impacts upon ATR-dependent DNA damage responses. Hum. Mol. Genet. 14, 2685–2693 (2005).

    Article  CAS  Google Scholar 

  20. Bernstein, B. E., Meissner, A. & Lander, E. S. The mammalian epigenome. Cell 128, 669–681 (2007).

    Article  CAS  Google Scholar 

  21. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  Google Scholar 

  22. Peters, A. H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001).

    Article  CAS  Google Scholar 

  23. Whetstine, J. R. et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125, 467–481 (2006).

    Article  CAS  Google Scholar 

  24. Klose, R. J. et al. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442, 312–316 (2006).

    Article  CAS  Google Scholar 

  25. Hong, S. et al. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc. Natl Acad. Sci. USA 104, 18439–18444 (2007).

    Article  CAS  Google Scholar 

  26. Stiff, T. et al. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 64, 2390–2396 (2004).

    Article  CAS  Google Scholar 

  27. Ayoub, N., Jeyasekharan, A. D., Bernal, J. A. & Venkitaraman, A. R. HP1-β mobilization promotes chromatin changes that initiate the DNA damage response. Nature 453, 682–686 (2008).

    Article  CAS  Google Scholar 

  28. Ruzzene, M., Penzo, D. & Pinna, L. A. Protein kinase CK2 inhibitor 4, 5, 6, 7-tetrabromobenzotriazole (TBB) induces apoptosis and caspase-dependent degradation of haematopoietic lineage cell-specific protein 1 (HS1) in Jurkat cells. Biochem. J. 364, 41–47 (2002).

    Article  CAS  Google Scholar 

  29. Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    Article  CAS  Google Scholar 

  30. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  Google Scholar 

  31. Regha, K. et al. Active and repressive chromatin are interspersed without spreading in an imprinted gene cluster in the mammalian genome. Mol. Cell 27, 353–366 (2007).

    Article  CAS  Google Scholar 

  32. Goodarzi, A. A. et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol. Cell 31, 167–177 (2008).

    Article  CAS  Google Scholar 

  33. Vakoc, C. R., Sachdeva, M. M., Wang, H. & Blobel, G. A. Profile of histone lysine methylation across transcribed mammalian chromatin. Mol. Cell Biol. 26, 9185–9195 (2006).

    Article  CAS  Google Scholar 

  34. Seligson, D. B. et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435, 1262–1266 (2005).

    Article  CAS  Google Scholar 

  35. Pethe, K. et al. Mycobacterial heparin-binding hemagglutinin and laminin-binding protein share antigenic methyllysines that confer resistance to proteolysis. Proc. Natl Acad. Sci. USA 99, 10759–10764 (2002).

    Article  CAS  Google Scholar 

  36. Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).

    Article  CAS  Google Scholar 

  37. Xu, X. & Stern, D. F. NFBD1/KIAA0170 is a chromatin-associated protein involved in DNA damage signaling pathways. J. Biol. Chem. 278, 8795–8803 (2003).

    Article  CAS  Google Scholar 

  38. Yang, Y. et al. Targeted disruption of the murine Fanconi anemia gene, Fancg/Xrcc9. Blood 98, 3435–3440 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Jenuwein for providing Suv39h1/2 cells, D. Ferguson for providing Rad50-deficient HCT116 cells, and H. Chan, J. Cote, D. Chowdhury and A. D'Andrea for critical discussions and reading of the manuscript. This work was supported by grants from the NCI (CA64585 and CA93602) and the DOD Breast Cancer Program to B.D.P., and by NCI training grants to Y.S. and M.K.A. (T32 CA09078). Y.X. is supported by a U19 Center grant from NIAID (U19AI067751).

Author information

Authors and Affiliations

Authors

Contributions

B.D.P. conceived the research, wrote the paper and carried out data analysis. Y.S. carried out most of the experiments, participated in data analysis, planned experiments and contributed to writing the paper. X.J. carried out the experiments on H2AX, Chk2 and p53 phosphorylation and contributed to data analysis. Y.X. carried out some of the Rad50 experiments and contributed to protocol development. M.K.A. participated in the Rad50 experiments. L.A.M. carried out cytogenetic studies and participated in data analysis. J.R.W. contributed key materials and participated in data analysis. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Brendan D. Price.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1739 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Jiang, X., Xu, Y. et al. Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60. Nat Cell Biol 11, 1376–1382 (2009). https://doi.org/10.1038/ncb1982

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1982

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing