Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reduced cytosolic protein synthesis suppresses mitochondrial degeneration

Abstract

Mitochondrial function degenerates with ageing and in ageing-related neuromuscular degenerative diseases, causing physiological decline of the cell1. Factors that can delay the degenerative process are actively sought after. Here, we show that reduced cytosolic protein synthesis is a robust cellular strategy that suppresses ageing-related mitochondrial degeneration. We modelled autosomal dominant progressive external ophthalmoplegia (adPEO), an adult- or later-onset degenerative disease, by introducing the A128P mutation into the adenine nucleotide translocase Aac2p of Saccharomyces cerevisiae. The aac2A128P allele dominantly induces ageing-dependent mitochondrial degeneration and phenotypically tractable degenerative cell death, independently of its ADP/ATP exchange activity. Mitochondrial degeneration was suppressed by lifespan-extending nutritional interventions and by eight longevity mutations, which are all known to reduce cytosolic protein synthesis. These longevity interventions also independently suppressed ageing-related mitochondrial degeneration in the pro-ageing prohibitin mutants. The aac2A128P mutant has reduced mitochondrial membrane potential (Δψm) and is synthetically lethal to low Δψm conditions, including the loss of prohibitin. Mitochondrial degeneration was accelerated by defects in protein turnover on the inner membrane and was suppressed by cycloheximide, a specific inhibitor of cytosolic ribosomes. Reduced cytosolic protein synthesis suppressed membrane depolarization and defects in mitochondrial gene expression in aac2A128P cells. Our finding thus establishes a link between protein homeostasis (proteostasis), cellular bioenergetics and mitochondrial maintenance during ageing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The aac2A128P alleles induces defects in mitochondrial biogenesis independently of ADP/ATP exchange activity or mtDNA instability.
Figure 2: Ageing accelerates mitochondrial degeneration and degenerative cell death.
Figure 3: Longevity interventions suppress mitochondrial degeneration.
Figure 4: Longevity interventions suppress ageing-dependent mitochondrial degeneration in prohibitin mutants.
Figure 5: Modulation of aac2A128P-induced cell death by mitochondrial protein loading.

Similar content being viewed by others

References

  1. Wallace, D. C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005).

    Article  CAS  Google Scholar 

  2. Spinazzola, A. & Zeviani, M. Disorders of nuclear-mitochondrial intergenomic signaling. Gene 354, 162–168 (2005).

    Article  CAS  Google Scholar 

  3. Suomalainen, A. & Kaukonen, J. Diseases caused by nuclear genes affecting mtDNA stability. Am. J. Med. Genet. 106, 53–61 (2001).

    Article  CAS  Google Scholar 

  4. Kaukonen, J. et al. Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science 289, 782–785 (2000).

    Article  CAS  Google Scholar 

  5. Esposito, L. A., Melov, S., Panov, A., Cottrell, B. A. & Wallace, D. C. Mitochondrial disease in mouse results in increased oxidative stress. Proc. Natl Acad. Sci. USA 96, 4820–4825 (1999).

    Article  CAS  Google Scholar 

  6. Fontanesi, F. et al. Mutations in AAC2, equivalent to human adPEO-associated ANT1 mutations, lead to defective oxidative phosphorylation in Saccharomyces cerevisiae and affect mitochondrial DNA stability. Hum. Mol. Genet. 13, 923–934 (2004).

    Article  CAS  Google Scholar 

  7. Chen, X. J. Induction of an unregulated channel by mutations in adenine nucleotide translocase suggests an explanation for human ophthalmoplegia. Hum. Mol. Genet. 11, 1835–1843 (2002).

    Article  CAS  Google Scholar 

  8. Pebay-Peyroula, E. et al. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426, 39–44 (2003).

    Article  CAS  Google Scholar 

  9. Heidkamper, D., Muller, V., Nelson, D. R. & Klingenberg, M. Probing the role of positive residues in the ADP/ATP carrier from yeast. The effect of six arginine mutations on transport and the four ATP versus ADP exchange modes. Biochemistry 35, 16144–16152 (1996).

    Article  CAS  Google Scholar 

  10. Fabrizio, P., Pletcher, S. D., Minois, N., Vaupel, J. W. & Longo, V. D. Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae. FEBS Lett. 557, 136–142 (2004).

    Article  CAS  Google Scholar 

  11. Kaeberlein, M. et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310, 1193–1196 (2005).

    Article  CAS  Google Scholar 

  12. Steffen, K. K. et al. Yeast life span extension by depletion of 60S ribosomal subunit is mediated by Gcn4. Cell 133, 292–302 (2008).

    Article  CAS  Google Scholar 

  13. Lin, S. J., Defossez, P. A. & Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126–2128 (2000).

    Article  CAS  Google Scholar 

  14. Sinclair, D. A. & Guarente, L. Extrachromosomal rDNA circles — a cause of aging in yeast. Cell 91, 1033–1042 (1997).

    Article  CAS  Google Scholar 

  15. Defossez, P. A. et al. Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol. Cell 3, 447–455 (1999).

    Article  CAS  Google Scholar 

  16. Lebreton, A. et al. A functional network involved in the recycling of nucleocytoplasmic pre-60S factors. J. Cell Biol. 173, 349–360 (2006).

    Article  CAS  Google Scholar 

  17. Jiang, J. C., Jaruga, E., Repnevskaya, M. V. & Jazwinski, S. M. An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J. 14, 2135–2137 (2000).

    Article  CAS  Google Scholar 

  18. Rinnerthaler, M. et al. MMI1 (YKL056c, TMA19), the yeast orthologue of the translationally controlled tumor protein (TCTP) has apoptotic functions and interacts with both microtubules and mitochondria. Biochim. Biophys. Acta 1757, 631–638 (2006).

    Article  CAS  Google Scholar 

  19. Kim, S., Benguria, A., Lai, C. Y. & Jazwinski, S. M. Modulation of life-span by histone deacetylase genes in Saccharomyces cerevisiae. Mol Biol Cell 10, 3125–3136 (1999).

    Article  CAS  Google Scholar 

  20. Fleischer, T. C., Weaver, C. M., McAfee, K. J., Jennings, J. L. & Link, A. J. Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes. Genes Dev. 20, 1294–1307 (2006).

    Article  CAS  Google Scholar 

  21. Meskauskas, A. et al. Delayed rRNA processing results in significant ribosome biogenesis and functional defects. Mol. Cell Biol. 23, 1602–1613 (2003).

    Article  CAS  Google Scholar 

  22. Lai, C. Y., Jaruga, E., Borghouts, C. & Jazwinski, S. M. A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae. Genetics 162, 73–87 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Coates, P. J., Jamieson, D. J., Smart, K., Prescott, A. R. & Hall, P. A. The prohibitin family of mitochondrial proteins regulate replicative lifespan. Curr. Biol. 7, 607–610 (1997).

    Article  CAS  Google Scholar 

  24. Arnold, I. & Langer, T. Membrane protein degradation by AAA proteases in mitochondria. Biochim. Biophys. Acta 1592, 89–96 (2002).

    Article  CAS  Google Scholar 

  25. Chen, J. C., Jiang, C. Z. & Reid, M. S. Silencing a prohibitin alters plant development and senescence. Plant J. 44, 16–24 (2005).

    Article  CAS  Google Scholar 

  26. Dunn, C. D., Lee, M. S., Spencer, F. A. & Jensen, R. E. A genomewide screen for petite-negative yeast strains yields a new subunit of the i-AAA protease complex. Mol. Biol. Cell 17, 213–226 (2006).

    Article  CAS  Google Scholar 

  27. Thorsness, P. E., White, K. H. & Fox, T. D. Inactivation of YME1, a member of the ftsH-SEC18-PAS1-CDC48 family of putative ATPase-encoding genes, causes increased escape of DNA from mitochondria in Saccharomyces cerevisiae. Mol. Cell Biol. 13, 5418–5426 (1993).

    Article  CAS  Google Scholar 

  28. Pearce, D. A. & Sherman, F. Degradation of cytochrome oxidase subunits in mutants of yeast lacking cytochrome c and suppression of the degradation by mutation of yme1. J. Biol. Chem. 270, 20879–20882 (1995).

    Article  CAS  Google Scholar 

  29. Brand, M. D. et al. The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochem. J. 392, 353–362 (2005).

    Article  CAS  Google Scholar 

  30. Miller, R. A. et al. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4, 119–125 (2005).

    Article  CAS  Google Scholar 

  31. Lin, S. J. et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418, 344–348 (2002).

    Article  CAS  Google Scholar 

  32. Tong, J. J., Schriner, S. E., McCleary, D., Day, B. J. & Wallace, D. C. Life extension through neurofibromin mitochondrial regulation and antioxidant therapy for neurofibromatosis-1 in Drosophila melanogaster. Nature Genet. 39, 476–485 (2007).

    Article  CAS  Google Scholar 

  33. Bonawitz, N. D., Chatenay-Lapointe, M., Pan, Y. & Shadel, G. S. Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab. 5, 265–277 (2007).

    Article  CAS  Google Scholar 

  34. Tavernarakis, N. Ageing and the regulation of protein synthesis: a balancing act? Trends Cell Biol. 18, 228–235 (2008).

    Article  CAS  Google Scholar 

  35. Chiocchetti, A. et al. Ribosomal proteins Rpl10 and Rps6 are potent regulators of yeast replicative life span. Exp. Gerontol. 42, 275–286 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Schmitt and M. Kucej for critical reading of the manuscript, and L. Sabova and C. Koehler for providing the anti-Aac2 antibody. This work was supported by grants from National Institutes of Health (AG023731) and the American Heart Association (0435047N).

Author information

Authors and Affiliations

Authors

Contributions

X.W., X.Z., B.K. and X.J.C. performed the experiments; X.J.C. designed the experiments, analysed data and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Xin Jie Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, Supplementary Methods, Supplementary Table S1, Supplementary Note and Supplementary Discussion (PDF 1374 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Zuo, X., Kucejova, B. et al. Reduced cytosolic protein synthesis suppresses mitochondrial degeneration. Nat Cell Biol 10, 1090–1097 (2008). https://doi.org/10.1038/ncb1769

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1769

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing