Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of monoubiquitinated PCNA by DUB autocleavage

An Erratum to this article was published on 01 April 2006

Abstract

Monoubiquitination is a reversible post-translational protein modification that has an important regulatory function in many biological processes, including DNA repair. Deubiquitinating enzymes (DUBs) are proteases that are negative regulators of monoubiquitination, but little is known about their regulation and contribution to the control of conjugated-substrate levels. Here, we show that the DUB ubiquitin specific protease 1 (USP1) deubiquitinates the DNA replication processivity factor, PCNA, as a safeguard against error-prone translesion synthesis (TLS) of DNA. Ultraviolet (UV) irradiation inactivates USP1 through an autocleavage event, thus enabling monoubiquitinated PCNA to accumulate and to activate TLS. Significantly, the site of USP1 cleavage is immediately after a conserved internal ubiquitin-like diglycine (Gly–Gly) motif. This mechanism is reminiscent of the processing of precursors of ubiquitin and ubiquitin-like modifiers by DUBs. Our results define a regulatory mechanism for protein ubiquitination that involves the signal-induced degradation of an inhibitory DUB.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Knockdown of USP1 increases PCNA monoubiquitination.
Figure 2: UV damage degrades USP1 and increases PCNA monoubiquitination.
Figure 3: Inhibition of diverse DNA repair pathways does not affect UV-induced USP1 degradation.
Figure 4: Degradation of USP1 requires its own catalytic activity.
Figure 5: The conserved diglycine motif of USP1 is required for its autocleavage.
Figure 6: Increased mutation frequency in cells depleted of USP1.

Similar content being viewed by others

References

  1. Hicke, L. Protein regulation by monoubiquitin. Nature Rev. Mol. Cell Biol. 2, 195–201 (2001).

    Article  CAS  Google Scholar 

  2. Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  Google Scholar 

  3. Wilkinson, K. D. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin. Cell Dev. Biol. 11, 141–148 (2000).

    Article  CAS  Google Scholar 

  4. D'Andrea, A. & Pellman, D. Deubiquitinating enzymes: a new class of biological regulators. Crit. Rev. Biochem. Mol. Biol. 33, 337–352 (1998).

    Article  CAS  Google Scholar 

  5. Friedberg, E. C., Lehmann, A. R. & Fuchs, R. P. Trading places: how do DNA polymerases switch during translesion DNA synthesis? Mol. Cell 18, 499–505 (2005).

    Article  CAS  Google Scholar 

  6. Hoege, C. et al. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002).

    Article  CAS  Google Scholar 

  7. Kannouche, P. L., Wing, J. & Lehmann, A. R. Interaction of human DNA polymerase η with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14, 491–500 (2004).

    Article  CAS  Google Scholar 

  8. Watanabe, K. et al. Rad18 guides polη to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J. 23, 3886–3896 (2004).

    Article  CAS  Google Scholar 

  9. Friedberg, E. C., Wagner, R. & Radman, M. Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science 296, 1627–1630 (2002).

    Article  CAS  Google Scholar 

  10. Kusumoto, R. et al. DNA binding properties of human DNA polymerase η: implications for fidelity and polymerase switching of translesion synthesis. Genes Cells 9, 1139–1150 (2004).

    Article  CAS  Google Scholar 

  11. Kunkel, T. A. DNA replication fidelity. J. Biol. Chem. 279, 16895–16898 (2004).

    Article  CAS  Google Scholar 

  12. Bienko, M. et al. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310, 1821–1824 (2005).

    Article  CAS  Google Scholar 

  13. Garg, P. & Burgers, P. M. Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases η and REV1. Proc. Natl Acad. Sci. USA 102, 18361–18366 (2005).

    Article  CAS  Google Scholar 

  14. Amerik, A. Y. & Hochstrasser, M. Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta. 1695, 189–207 (2004).

    Article  CAS  Google Scholar 

  15. Nijman, S. M. et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773–786 (2005).

    Article  CAS  Google Scholar 

  16. Nijman, S. M. et al. The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol. Cell 17, 331–339 (2005).

    Article  CAS  Google Scholar 

  17. Howlett, N. G. et al. The Fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability. Hum. Mol. Genet. 14, 693–701 (2005).

    Article  CAS  Google Scholar 

  18. Hussain, S. et al. Direct interaction of FANCD2 with BRCA2 in DNA damage response pathways. Hum. Mol. Genet. 13, 1241–1248 (2004).

    Article  CAS  Google Scholar 

  19. Stelter, P. & Ulrich, H. D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188–191 (2003).

    Article  CAS  Google Scholar 

  20. Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell 7, 249–262 (2001).

    Article  CAS  Google Scholar 

  21. D'Andrea, A. D. & Grompe, M. The Fanconi anaemia/BRCA pathway. Nature Rev. Cancer 3, 23–34 (2003).

    Article  CAS  Google Scholar 

  22. Kennedy, R. D. & D'Andrea, A. D. The Fanconi Anemia/BRCA pathway: new faces in the crowd. Genes Dev. 19, 2925–2940 (2005).

    Article  CAS  Google Scholar 

  23. Meetei, A. R. et al. A novel ubiquitin ligase is deficient in Fanconi anemia. Nature Genet. 35, 165–170 (2003).

    Article  CAS  Google Scholar 

  24. Borodovsky, A. et al. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem. Biol. 9, 1149–1159 (2002).

    Article  CAS  Google Scholar 

  25. Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116, 51–61 (2004).

    Article  CAS  Google Scholar 

  26. Li, S. J. & Hochstrasser, M. A new protease required for cell-cycle progression in yeast. Nature 398, 246–251 (1999).

    Article  CAS  Google Scholar 

  27. Jentsch, S. & Pyrowolakis, G. Ubiquitin and its kin: how close are the family ties? Trends Cell Biol. 10, 335–342 (2000).

    Article  CAS  Google Scholar 

  28. Rao, H., Uhlmann, F., Nasmyth, K. & Varshavsky, A. Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. Nature 410, 955–959 (2001).

    Article  CAS  Google Scholar 

  29. Kannouche, P. et al. Domain structure, localization, and function of DNA polymerase η, defective in xeroderma pigmentosum variant cells. Genes Dev. 15, 158–172 (2001).

    Article  CAS  Google Scholar 

  30. Choi, J. H. & Pfeifer, G. P. The role of DNA polymerase η in UV mutational spectra. DNA Repair 4, 211–220 (2005).

    Article  CAS  Google Scholar 

  31. Parris, C. N., Levy, D. D., Jessee, J. & Seidman, M. M. Proximal and distal effects of sequence context on ultraviolet mutational hotspots in a shuttle vector replicated in xeroderma cells. J. Mol. Biol. 236, 491–502 (1994).

    Article  CAS  Google Scholar 

  32. Shi, Y. Caspase activation: revisiting the induced proximity model. Cell 117, 855–858 (2004).

    Article  CAS  Google Scholar 

  33. Matsuda, T., Bebenek, K., Masutani, C., Hanaoka, F. & Kunkel, T. A. Low fidelity DNA synthesis by human DNA polymerase η. Nature 404, 1011–1013 (2000).

    Article  CAS  Google Scholar 

  34. Zhu, Y. et al. DUB-2 is a member of a novel family of cytokine-inducible deubiquitinating enzymes. J. Biol. Chem. 272, 51–57 (1997).

    Article  CAS  Google Scholar 

  35. Vugmeyster, Y. et al. The ubiquitin-proteasome pathway in thymocyte apoptosis: caspase-dependent processing of the deubiquitinating enzyme USP7 (HAUSP). Mol. Immunol. 39, 431–441 (2002).

    Article  CAS  Google Scholar 

  36. Reiley, W. et al. Regulation of the deubiquitinating enzyme CYLD by IκB kinaseK-dependent phosphorylation. Mol. Cell Biol. 25, 3886–3895 (2005).

    Article  CAS  Google Scholar 

  37. Brummelkamp, T. R., Nijman, S. M., Dirac, A. M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797–801 (2003).

    Article  CAS  Google Scholar 

  38. Andreassen, P. R., D'Andrea, A. D. & Taniguchi, T. ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev. 18, 1958–1963 (2004).

    Article  CAS  Google Scholar 

  39. Taniguchi, T. et al. S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood 100, 2414–2420 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Finley and members of the D'Andrea laboratory for critical reading of the manuscript. We are grateful to V. Notenboom for technical assistance. We thank T. Taniguchi for RAD18 and PCNA cDNAs and A. Lehmann for GFP-polη expression constructs. We are grateful to M. M. Seidman for generously providing the pSP189 plasmid and the MBM7070 bacterial strain. This work was supported by grants from the National Institutes of Health (NIH, A.D.D.) and was funded in part by the Doris Duke Charitable Foundation (A.D.D.). T.T.H. is a Blount fellow of the Damon Runyon Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan D. D'Andrea.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4 and S5 (PDF 115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, T., Nijman, S., Mirchandani, K. et al. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat Cell Biol 8, 341–347 (2006). https://doi.org/10.1038/ncb1378

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1378

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing