Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis for stop codon recognition in eukaryotes

Abstract

Termination of protein synthesis occurs when a translating ribosome encounters one of three universally conserved stop codons: UAA, UAG or UGA. Release factors recognize stop codons in the ribosomal A-site to mediate release of the nascent chain and recycling of the ribosome. Bacteria decode stop codons using two separate release factors with differing specificities for the second and third bases1. By contrast, eukaryotes rely on an evolutionarily unrelated omnipotent release factor (eRF1) to recognize all three stop codons2. The molecular basis of eRF1 discrimination for stop codons over sense codons is not known. Here we present cryo-electron microscopy (cryo-EM) structures at 3.5–3.8 Å resolution of mammalian ribosomal complexes containing eRF1 interacting with each of the three stop codons in the A-site. Binding of eRF1 flips nucleotide A1825 of 18S ribosomal RNA so that it stacks on the second and third stop codon bases. This configuration pulls the fourth position base into the A-site, where it is stabilized by stacking against G626 of 18S rRNA. Thus, eRF1 exploits two rRNA nucleotides also used during transfer RNA selection to drive messenger RNA compaction. In this compacted mRNA conformation, stop codons are favoured by a hydrogen-bonding network formed between rRNA and essential eRF1 residues that constrains the identity of the bases. These results provide a molecular framework for eukaryotic stop codon recognition and have implications for future studies on the mechanisms of canonical and premature translation termination3,4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of a eukaryotic translation termination complex.
Figure 2: Conformation of essential eRF1 motifs.
Figure 3: Stop codon configuration in the eukaryotic decoding centre.
Figure 4: Molecular basis of stop codon recognition by eRF1.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

Protein Data Bank

Data deposits

Maps have been deposited with the EMDB under accession codes 3038, 3039, and 3040. Atomic coordinates have been deposited with the Protein Data Bank under accession codes 3JAG, 3JAH and 3JAI.

References

  1. Scolnick, E., Tompkins, R., Caskey, T. & Nirenberg, M. Release factors differing in specificity for terminator codons. Proc. Natl Acad. Sci. USA 61, 768–774 (1968)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Frolova, L. et al. A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature 372, 701–703 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Dever, T. E. & Green, R. The elongation, termination, and recycling phases of translation in eukaryotes. Cold Spring Harb. Perspect. Biol. 4, a013706 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jackson, R. J., Hellen, C. U. T. & Pestova, T. V. Termination and post-termination events in eukaryotic translation. Adv. Protein Chem. Struct. Biol. 86, 45–93 (2012)

    Article  CAS  PubMed  Google Scholar 

  5. Muhs, M. et al. Cryo-EM of ribosomal 80S complexes with termination factors reveals the translocated cricket paralysis virus IRES. Mol. Cell 57, 422–432 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Taylor, D. et al. Cryo-EM structure of the mammalian eukaryotic release factor eRF1–eRF3-associated termination complex. Proc. Natl Acad. Sci. USA 109, 18413–18418 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pisarev, A. V. et al. The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol. Cell 37, 196–210 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shoemaker, C. J. & Green, R. Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast. Proc. Natl Acad. Sci. USA 108, E1392–E1398 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Frolova, L. Y. et al. Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA 5, 1014–1020 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Preis, A. et al. Cryoelectron microscopic structures of eukaryotic translation termination complexes containing eRF1-eRF3 or eRF1-ABCE1. Cell Rep. 8, 59–65 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Song, H. et al. The crystal structure of human eukaryotic release factor eRF1—mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100, 311–321 (2000)

    Article  CAS  PubMed  Google Scholar 

  12. Laurberg, M. et al. Structural basis for translation termination on the 70S ribosome. Nature 454, 852–857 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Weixlbaumer, A. et al. Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322, 953–956 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Korostelev, A. et al. Crystal structure of a translation termination complex formed with release factor RF2. Proc. Natl Acad. Sci. USA 105, 19684–19689 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brown, C. M., Stockwell, P. A., Trotman, C. N. & Tate, W. P. Sequence analysis suggests that tetra-nucleotides signal the termination of protein synthesis in eukaryotes. Nucleic Acids Res. 18, 6339–6345 (1990)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shirokikh, N. E. et al. Quantitative analysis of ribosome–mRNA complexes at different translation stages. Nucleic Acids Res. 38, e15 (2010)

    Article  PubMed  Google Scholar 

  17. Kryuchkova, P. et al. Two-step model of stop codon recognition by eukaryotic release factor eRF1. Nucleic Acids Res. 41, 4573–4586 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Poole, E. S., Brown, C. M. & Tate, W. P. The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli . EMBO J. 14, 151–158 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chavatte, L., Seit-Nebi, A., Dubovaya, V. & Favre, A. The invariant uridine of stop codons contacts the conserved NIKSR loop of human eRF1 in the ribosome. EMBO J. 21, 5302–5311 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bulygin, K. N. et al. Three distinct peptides from the N domain of translation termination factor eRF1 surround stop codon in the ribosome. RNA 16, 1902–1914 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Frolova, L., Seit-Nebi, A. & Kisselev, L. Highly conserved NIKS tetrapeptide is functionally essential in eukaryotic translation termination factor eRF1. RNA 8, 129–136 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Feng, T. et al. Optimal translational termination requires C4 lysyl hydroxylation of eRF1. Mol. Cell 53, 645–654 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kolosov, P. et al. Invariant amino acids essential for decoding function of polypeptide release factor eRF1. Nucleic Acids Res. 33, 6418–6425 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wong, L. E., Li, Y., Pillay, S., Frolova, L. & Pervushin, K. Selectivity of stop codon recognition in translation termination is modulated by multiple conformations of GTS loop in eRF1. Nucleic Acids Res. 40, 5751–5765 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng, Z. et al. Structural insights into eRF3 and stop codon recognition by eRF1. Genes Dev. 23, 1106–1118 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seit-Nebi, A., Frolova, L. & Kisselev, L. Conversion of omnipotent translation termination factor eRF1 into ciliate-like UGA-only unipotent eRF1. EMBO Rep. 3, 881–886 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Czaplinski, K. et al. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev. 12, 1665–1677 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Keeling, K. M., Xue, X., Gunn, G. & Bedwell, D. M. Therapeutics based on stop codon readthrough. Annu. Rev. Genomics Hum. Genet. 15, 371–394 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mort, M., Ivanov, D., Cooper, D. N. & Chuzhanova, N. A. A meta-analysis of nonsense mutations causing human genetic disease. Hum. Mutat. 29, 1037–1047 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. Shao, S., von der Malsburg, K. & Hegde, R. S. Listerin-dependent nascent protein ubiquitination relies on ribosome subunit dissociation. Mol. Cell 50, 637–648 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sharma, A., Mariappan, M., Appathurai, S. & Hegde, R. S. in Protein Secretion 619, 339–363 (Humana Press, 2010)

    Book  Google Scholar 

  32. Shao, S. & Hegde, R. S. Reconstitution of a minimal ribosome-associated ubiquitination pathway with purified factors. Mol. Cell 55, 880–890 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bai, X.-C., Fernandez, I. S., McMullan, G. & Scheres, S. H. W. Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. eLife 2, e00461 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nature Methods 10, 584–590 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Scheres, S. H. W. Semi-automated selection of cryo-EM particles in RELION-1.3. J. Struct. Biol. 189, 114–122 (2015)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Scheres, S. H. W. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Scheres, S. H. Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 3, e03665 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003)

    CAS  PubMed  Google Scholar 

  40. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nature Methods 11, 63–65 (2014)

    Article  CAS  PubMed  Google Scholar 

  41. Voorhees, R. M., Fernandez, I. S., Scheres, S. H. W. & Hegde, R. S. Structure of the mammalian ribosome-Sec61 complex to 3.4 Å resolution. Cell 157, 1632–1643 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shao, S., Brown, A., Santhanam, B. & Hegde, R. S. Structure and assembly pathway of the ribosome quality control complex. Mol. Cell 57, 433–444 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004)

    CAS  PubMed  Google Scholar 

  44. Karcher, A., Schele, A. & Hopfner, K. P. X-ray structure of the complete ABC enzyme ABCE1 from Pyrococcus abyssi . J. Biol. Chem. 283, 7962–7971 (2008)

    Article  CAS  PubMed  Google Scholar 

  45. Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. D 71, 136–153 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Selmer, M. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Chan, P. P. & Lowe, T. M. GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res. 37, D93–D97 (2009)

    Article  CAS  PubMed  Google Scholar 

  48. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010)

    Article  CAS  PubMed  Google Scholar 

  49. Amunts, A. et al. Structure of the yeast mitochondrial large ribosomal subunit. Science 343, 1485–1489 (2014)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Savva, F. de Haas, and S. Welsch for assisting with cryo-EM data collection, J. Grimmett and T. Darling for computing support, D. Barford for critically reading the manuscript, and I. Fernández, J. Llácer, G. Murshudov, S. Scheres, and R. Voorhees for useful discussions. Gctf is available on request from K. Zhang (kzhang@mrc-lmb.cam.ac.uk). This work was supported by the UK Medical Research Council (MC_UP_A022_1007 to R.S.H. and MC_U105184332 to V.R.). A.B. was supported by a Career Development Fellowship. S.S. was supported by a St John’s College Title A fellowship. J.M. thanks T. Dever, NICHD, and the NIH Oxford-Cambridge Scholars’ Program for support. V.R. was supported by a Wellcome Trust Senior Investigator award (WT096570), the Agouron Institute, and the Jeantet Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.B., S.S., R.S.H. and V.R. designed the study. S.S. purified complexes and prepared samples. A.B., S.S. and J.M. collected data. A.B. calculated the cryo-EM reconstructions, built the atomic models and interpreted the structure. A.B., S.S., R.S.H and V.R. wrote the manuscript. All authors discussed and commented on the final manuscript.

Corresponding authors

Correspondence to Ramanujan S. Hegde or V. Ramakrishnan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 eRF1(AAQ) stalls ribosomes at stop codons.

a, Line diagrams of mRNA encoding nascent chain (NC) substrates used in this study. The cytosolic portion of human Sec61β (residues 1–68, orange) was modified to contain an N-terminal 3 × Flag tag (green) for affinity purification and the autonomously-folding villin headpiece (VHP, blue) domain. The three stop codons were individually inserted after Val68 of Sec61β to generate substrates for eRF1(AAQ)-mediated stalling, or the mRNA was truncated after the same residue to generate an independently-stalling substrate. b, In vitro translation reactions of NC-stop substrates containing the indicated stop codon (see panel a) in the presence of [35S]methionine without or with excess eRF1 WT or eRF1(AAQ). Reactions were for 25 min at 32 °C and directly analyzed by SDS–PAGE and auto-radiography. The terminated (NC) and tRNA-associated (NC-tRNA) nascent chain products are indicated. Addition of eRF1(AAQ) selectively prevents peptide hydrolysis when the stop codon is reached. c, Anti-Flag affinity purifications of ribosome-nascent chains (RNCs) stalled either by mRNA truncation or at the UAA stop codon with eRF1(AAQ) (see a) were immunoblotted for the splitting factors Hbs1 and ABCE1. The different amounts of Hbs1 and ABCE1 co-purified despite identical nascent chain sequences in each RNC complex suggest that eRF1(AAQ) selectively traps ABCE1 on pre-termination complexes. d, SDS–PAGE and Coomassie staining of affinity-purified eRF1(AAQ)-stalled ribosome-nascent chains containing the UGA stop codon used for cryo-EM analysis. Bands corresponding to ribosomal proteins, ABCE1, and eRF1(AAQ), which were verified by immunoblotting and mass spectrometry (data not shown), are indicated.

Extended Data Figure 2 In silico 3D classification scheme for cryo-EM data sets.

Particles extracted from automated particle picking in RELION were subjected to 2D classification. Non-ribosomal particles were discarded and the remaining particles were combined for a 3D refinement. The resulting map was used as a reference for 3D classification, which typically isolated 5 distinct classes of ribosomal complexes with the indicated distributions. Classes containing 80S ribosomes with canonical P- and E-site tRNAs and weak factor density in the A-site (40%) were combined and subjected to another round of 3D classification for A-site occupancy. Approximately one-third of this population contained strong density for eRF1(AAQ) and ABCE1. These particles were combined for subsequent 3D refinement and movie processing. All four data sets (two for the UAA stop codon and one each for the UAG and UGA stop codons) were processed similarly. The eRF1(AAQ)–ABCE1-containing particles of the two UAA data sets after the two rounds of classification were combined for refinement to yield the final map.

Extended Data Figure 3 Quality of maps and models.

a, Fourier shell correlation (FSC) curves for the electron microscopy maps of each termination complex containing the indicated stop codon. b, Isolated eRF1(AAQ)–ABCE1 density from the UAA termination complex map coloured by local resolution. c, Fit of models to maps. FSC curves calculated between the refined model and the final map (black), and with the self- (blue) and cross-validated (magenta) correlations for each stop codon complex. The electron microscopy map of each termination complex coloured by local resolution (as in b) is displayed next to the corresponding curves.

Extended Data Figure 4 eRF1(AAQ) interactions within the termination complex.

a, Comparison of ribosome-bound eRF1(AAQ) (coloured by domain) with the crystal structure of eRF1 (PDB accession code 1DT9, grey) superposed on the C domain. Both the N and M domains of eRF1 rotate upon stop codon recognition on the ribosome. The P-site tRNA (green) and nascent chain (teal) are shown for orientation. b, Interaction of helix α2 of the N domain of eRF1(AAQ) (purple) with the anticodon stem loop (ASL) of the P-site tRNA (green). c, Superposition of the eRF1(AAQ) M domain (purple) with the eRF1 crystal structure (PDB accession code 1DT9) showing a 10 Å movement of the GGQ-loop to accommodate within the peptidyl transferase centre.

Extended Data Figure 5 Examples of map densities.

a, Density (from the UAG-containing termination complex) for the nascent chain (teal) attached to the CCA end of the P-site tRNA (green) is of sufficient resolution to model the defined sequence of the C-terminal end of the programmed nascent chain. This provides additional verification that the termination complexes are stalled at Val68 of Sec61β (human numbering) with the stop codon in the A-site (see also Extended Data Fig. 1a). A stacking interaction between an aromatic residue of the nascent chain and U4555 (blue) lining the ribosomal exit tunnel can also be observed. b, Densities for the interactions between the UAG stop codon (grey), a portion of h44 of 18S rRNA (yellow) and the YxCxxxF and NIKS motifs of eRF1(AAQ) (purple). The invariant isoleucine of the NIKS motif provides a hydrophobic base for the stacking of the +2 and +3 bases of the stop codon with A1825. Unlike the tyrosine and cysteine residues of the YxCxxxF motif, the phenylalanine does not contribute to stop codon recognition, but to the hydrophobic packing of the eRF1 N domain.

Extended Data Figure 6 Hydrogen bonds specify for uridine at the +1 position.

Chemical diagrams of uridine and cytidine with hydrogen bond donors (blue) and acceptors (magenta) indicated. Two of the three hydrogen bonds that uridine forms with Asn61 and Lys63 of the NIKS motif of eRF1(AAQ) (purple) are not possible with cytidine (see also Fig. 4a).

Extended Data Table 1 Refinement and model statistics

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, A., Shao, S., Murray, J. et al. Structural basis for stop codon recognition in eukaryotes. Nature 524, 493–496 (2015). https://doi.org/10.1038/nature14896

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14896

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing