Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Developmental genetics of vertebrate glial–cell specification

Abstract

Oligodendrocytes and astrocytes are macroglial cells of the vertebrate central nervous system. These cells have diverse roles in the maintenance of neurological function. In the embryo, the genetic mechanisms that underlie the specification of macroglial precursors in vivo appear strikingly similar to those that regulate the development of the diverse neuron types. The switch from producing neuronal to glial subtype-specific precursors can be modelled as an interplay between region-restricted components and temporal regulators that determine neurogenic or gliogenic phases of development, contributing to glial diversity. Gaining insight into the developmental genetics of macroglia has great potential to improve our understanding of a variety of neurological disorders in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Patterns of gliogenesis in embryonic and adult progenitor zones.
Figure 2: Patterning of the neural tube generates unique domains for neuronal and glial progenitors.
Figure 3: Multiple waves of oligodendrocyte production in the mammalian CNS.

Similar content being viewed by others

References

  1. Zalc, B. & Colman, D. R. Origins of vertebrate success. Science 288, 271–272 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Roots, B. I. The phylogeny of invertebrates and the evolution of myelin. Neuron Glia Biol. 4, 101–109 (2008).

    Article  PubMed  Google Scholar 

  3. Lin, S. C. & Bergles, D. E. Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nature Neurosci. 7, 24–32 (2004). This paper shows that OPCs of the hippocampus receive direct input from interneurons, suggesting that GABA (γ-aminobutyric acid)-induced chloride flux influences oligodendrocyte development and the efficacy of glutamate-induced signalling in OPCs.

    Article  CAS  PubMed  Google Scholar 

  4. Malatesta, P., Hartfuss, E. & Gotz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263 (2000). This paper highlights the neurogenic potential of radial glia. Using fluorescence-activated cell sorting, radial glia isolated from the embryonic neocortex were shown to generate neurons, as well as astrocytes.

    Article  CAS  PubMed  Google Scholar 

  5. Miyata, T., Kawaguchi, A., Okano, H. & Ogawa, M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31, 727–741 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720 (2001). This study used retroviral labelling in utero and showed that neurons were directly generated through the self-renewal division of radial glia.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Anthony, T. E., Klein, C., Fishell, G. & Heintz, N. Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41, 881–890 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Haubensak, W., Attardo, A., Denk, W. & Huttner, W. B. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc. Natl Acad. Sci. USA 101, 3196–3201 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miyata, T. et al. Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131, 3133–3145 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Noctor, S. C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neurosci. 7, 136–144 (2004).

    CAS  PubMed  Google Scholar 

  11. Noctor, S. C., Martinez-Cerdeno, V. & Kriegstein, A. R. Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J. Comp. Neurol. 508, 28–44 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Briscoe, J. & Novitch, B. G. Regulatory pathways linking progenitor patterning, cell fates and neurogenesis in the ventral neural tube. Phil. Trans. R. Soc. B 363, 57–70 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Ulloa, F. & Marti, E. Wnt won the war: antagonistic role of Wnt over Shh controls dorso-ventral patterning of the vertebrate neural tube. Dev. Dyn. 239, 69–76 (2010).

    CAS  PubMed  Google Scholar 

  14. Orentas, D. M., Hayes, J. E., Dyer, K. L. & Miller, R. H. Sonic hedgehog signaling is required during the appearance of spinal cord oligodendrocyte precursors. Development 126, 2419–2429 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Dessaud, E. et al. Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450, 717–720 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Vallstedt, A., Klos, J. M. & Ericson, J. Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron 45, 55–67 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Lu, Q. R. et al. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75–86 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Zhou, Q. & Anderson, D. J. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109, 61–73 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Novitch, B. G., Chen, A. I. & Jessell, T. M. Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 31, 773–789 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Muroyama, Y., Fujiwara, Y., Orkin, S. H. & Rowitch, D. H. Specification of astrocytes by bHLH protein SCL in a restricted region of the neural tube. Nature 438, 360–363 (2005). This paper was the first to suggest that astrocyte development is regulated by region-restricted mechanisms.

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Hochstim, C., Deneen, B., Lukaszewicz, A., Zhou, Q. & Anderson, D. J. Identification of positionally distinct astrocyte subtypes whose identities are specified by a homeodomain code. Cell 133, 510–522 (2008). This paper shows that a homeodomain code in the ventral neural tube regulates the diversity of astrocytes. It provides the strongest evidence so far for the 'segmental model' of astrocyte development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Genethliou, N. et al. Spatially distinct functions of PAX6 and NKX2.2 during gliogenesis in the ventral spinal cord. Biochem. Biophys. Res. Commun. 382, 69–73 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Hoch, R. V., Rubenstein, J. L. & Pleasure, S. Genes and signaling events that establish regional patterning of the mammalian forebrain. Semin. Cell Dev. Biol. 20, 378–386 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Parras, C. M. et al. The proneural gene Mash1 specifies an early population of telencephalic oligodendrocytes. J. Neurosci. 27, 4233–4242 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bylund, M., Andersson, E., Novitch, B. G. & Muhr, J. Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nature Neurosci. 6, 1162–1168 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Sandberg, M., Kallstrom, M. & Muhr, J. Sox21 promotes the progression of vertebrate neurogenesis. Nature Neurosci. 8, 995–1001 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Masahira, N. et al. Olig2-positive progenitors in the embryonic spinal cord give rise not only to motoneurons and oligodendrocytes, but also to a subset of astrocytes and ependymal cells. Dev. Biol. 293, 358–369 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Lee, S. K., Lee, B., Ruiz, E. C. & Pfaff, S. L. Olig2 and Ngn2 function in opposition to modulate gene expression in motor neuron progenitor cells. Genes Dev. 19, 282–294 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Park, H. C. & Appel, B. Delta–Notch signaling regulates oligodendrocyte specification. Development 130, 3747–3755 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Battiste, J. et al. Ascl1 defines sequentially generated lineage-restricted neuronal and oligodendrocyte precursor cells in the spinal cord. Development 134, 285–293 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Gaiano, N., Nye, J. S. & Fishell, G. Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 26, 395–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Yang, X. et al. Notch1 signaling influences v2 interneuron and motor neuron development in the spinal cord. Dev. Neurosci. 28, 102–117 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Itoh, M. et al. Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev. Cell 4, 67–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Karcavich, R. & Doe, C. Q. Drosophila neuroblast 7-3 cell lineage: a model system for studying programmed cell death, Notch/Numb signaling, and sequential specification of ganglion mother cell identity. J. Comp. Neurol. 481, 240–251 (2005).

    Article  PubMed  Google Scholar 

  35. Esain, V., Postlethwait, J. H., Charnay, P. & Ghislain, J. FGF-receptor signalling controls neural cell diversity in the zebrafish hindbrain by regulating olig2 and sox9 . Development 137, 33–42 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Deneen, B. et al. The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron 52, 953–968 (2006). In this paper, the 'pro-glial-cell' transcription factor NFIA is described and shown to promote gliogenesis, inhibit neurogenesis in ventricular-zone spinal-cord progenitors and, at later stages, promote differentiation into astrocytes.

    Article  CAS  PubMed  Google Scholar 

  37. das Neves, L. et al. Disruption of the murine nuclear factor I-A gene (Nfia) results in perinatal lethality, hydrocephalus, and agenesis of the corpus callosum. Proc. Natl Acad. Sci. USA 96, 11946–11951 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Steele-Perkins, G. et al. The transcription factor gene Nfib is essential for both lung maturation and brain development. Mol. Cell. Biol. 25, 685–698 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cebolla, B. & Vallejo, M. Nuclear factor-I regulates glial fibrillary acidic protein gene expression in astrocytes differentiated from cortical precursor cells. J. Neurochem. 97, 1057–1070 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Wilczynska, K. M. et al. Nuclear factor I isoforms regulate gene expression during the differentiation of human neural progenitors to astrocytes. Stem Cells 27, 1173–1181 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gaspard, N. et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455, 351–357 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Shen, Q. et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nature Neurosci. 9, 743–751 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Desai, A. R. & McConnell, S. K. Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development 127, 2863–2872 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Petryniak, M. A., Potter, G. B., Rowitch, D. H. & Rubenstein, J. L. Dlx1 and Dlx2 control neuronal versus oligodendroglial cell fate acquisition in the developing forebrain. Neuron 55, 417–433 (2007). This paper shows that DLX1 and DLX2 repress oligodendrocyte production in an area of the forebrain and suggests that DLX1 and DLX2 have non-cell-autonomous effects or epigenetic effects in the oligodendrocyte lineage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Temple, S. The development of neural stem cells. Nature 414, 112–117 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Molne, M. et al. Early cortical precursors do not undergo LIF-mediated astrocytic differentiation. J. Neurosci. Res. 59, 301–311 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Takizawa, T. et al. DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev. Cell 1, 749–758 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Hermanson, O., Jepsen, K. & Rosenfeld, M. G. N-CoR controls differentiation of neural stem cells into astrocytes. Nature 419, 934–939 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Sardi, S. P., Murtie, J., Koirala, S., Patten, B. A. & Corfas, G. Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell 127, 185–197 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Fox, I. J. & Kornblum, H. I. Developmental profile of ErbB receptors in murine central nervous system: implications for functional interactions. J. Neurosci. Res. 79, 584–597 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Ghashghaei, H. T. et al. Reinduction of ErbB2 in astrocytes promotes radial glial progenitor identity in adult cerebral cortex. Genes Dev. 21, 3258–3271 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hirabayashi, Y. et al. Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Neuron 63, 600–613 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Namihira, M. et al. Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Dev. Cell 16, 245–255 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Campos, L. S., Duarte, A. J., Branco, T. & Henrique, D. mDll1 and mDll3 expression in the developing mouse brain: role in the establishment of the early cortex. J. Neurosci. Res. 64, 590–598 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Yoon, K. J. et al. Mind bomb 1-expressing intermediate progenitors generate Notch signaling to maintain radial glial cells. Neuron 58, 519–531 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Kamakura, S. et al. Hes binding to STAT3 mediates crosstalk between Notch and JAK–STAT signalling. Nature Cell Biol. 6, 547–554 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Barnabe-Heider, F. et al. Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron 48, 253–265 (2005). This paper provides evidence that embryonic cortical neurons regulate astrocyte development by secreting the neurotrophic cytokine CT1, which activates the gp130–JAK–STAT signalling pathway.

    Article  CAS  PubMed  Google Scholar 

  59. Bonni, A. et al. Regulation of gliogenesis in the central nervous system by the JAK–STAT signaling pathway. Science 278, 477–483 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Ochiai, W., Yanagisawa, M., Takizawa, T., Nakashima, K. & Taga, T. Astrocyte differentiation of fetal neuroepithelial cells involving cardiotrophin-1-induced activation of STAT3. Cytokine 14, 264–271 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Ware, C. B. et al. Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development 121, 1283–1299 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Koblar, S. A. et al. Neural precursor differentiation into astrocytes requires signaling through the leukemia inhibitory factor receptor. Proc. Natl Acad. Sci. USA 95, 3178–3181 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nakashima, K. et al. Synergistic signaling in fetal brain by STAT3–Smad1 complex bridged by p300. Science 284, 479–482 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Mabie, P. C., Mehler, M. F. & Kessler, J. A. Multiple roles of bone morphogenetic protein signaling in the regulation of cortical cell number and phenotype. J. Neurosci. 19, 7077–7088 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nakashima, K. et al. BMP2-mediated alteration in the developmental pathway of fetal mouse brain cells from neurogenesis to astrocytogenesis. Proc. Natl Acad. Sci. USA 98, 5868–5873 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Parras, C. M. et al. Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J. 23, 4495–4505 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Marshall, C. A., Novitch, B. G. & Goldman, J. E. Olig2 directs astrocyte and oligodendrocyte formation in postnatal subventricular zone cells. J. Neurosci. 25, 7289–7298 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fogarty, M., Richardson, W. D. & Kessaris, N. A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development 132, 1951–1959 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Nery, S., Wichterle, H. & Fishell, G. Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. Development 128, 527–540 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Kessaris, N. et al. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nature Neurosci. 9, 173–179 (2006). This study used Cre– loxP fate-mapping technology and showed that oligodendrocytes develop in at least three distinct waves from the time of embryogenesis through the postnatal stages.

    Article  CAS  PubMed  Google Scholar 

  71. Buffo, A. et al. Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain. Proc. Natl Acad. Sci. USA 105, 3581–3586 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hatton, J. D., Nguyen, M. H. & U, H. S. Differential migration of astrocytes grafted into the developing rat brain. Glia 9, 113–119 (1993).

    Article  CAS  PubMed  Google Scholar 

  73. Jacobsen, C. T. & Miller, R. H. Control of astrocyte migration in the developing cerebral cortex. Dev. Neurosci. 25, 207–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Zhou, H. F. & Lund, R. D. Migration of astrocytes transplanted to the midbrain of neonatal rats. J. Comp. Neurol. 317, 145–155 (1992).

    Article  CAS  PubMed  Google Scholar 

  75. Gray, G. E. & Sanes, J. R. Migratory paths and phenotypic choices of clonally related cells in the avian optic tectum. Neuron 6, 211–225 (1991).

    Article  CAS  PubMed  Google Scholar 

  76. Merkle, F. T., Mirzadeh, Z. & Alvarez-Buylla, A. Mosaic organization of neural stem cells in the adult brain. Science 317, 381–384 (2007). This paper shows that in the adult the subventricular zone contains regions that produce different types of interneuron, which contribute to the rostral migratory stream and the olfactory bulb.

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Freeman, M. Specification and morphogenesis of astrocytes. Science (in the press).

  78. Goldman, S. A., Schanz, S. & Windrem, M. S. Stem cell-based strategies for treating pediatric disorders of myelin. Hum. Mol. Genet. 17, R76–R83 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Nagai, M. et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nature Neurosci. 10, 615–622 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Nicoll, J. A. & Weller, R. O. A new role for astrocytes: β-amyloid homeostasis and degradation. Trends Mol. Med. 9, 281–282 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Saijo, K. et al. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137, 47–59 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chang, A., Tourtellotte, W. W., Rudick, R. & Trapp, B. D. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N. Engl. J. Med. 346, 165–173 (2002).

    Article  PubMed  Google Scholar 

  83. Billiards, S. S. et al. Myelin abnormalities without oligodendrocyte loss in periventricular leukomalacia. Brain Pathol. 18, 153–163 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Richardson, W. D., Kessaris, N. & Pringle, N. Oligodendrocyte wars. Nature Rev. Neurosci. 7, 11–18 (2006).

    Article  CAS  Google Scholar 

  85. Raff, M. C., Miller, R. H. & Noble, M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303, 390–396 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Herrera, J. et al. Embryonic-derived glial-restricted precursor cells (GRP cells) can differentiate into astrocytes and oligodendrocytes in vivo . Exp. Neurol. 171, 11–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Rao, M. S., Noble, M. & Mayer-Proschel, M. A tripotential glial precursor cell is present in the developing spinal cord. Proc. Natl Acad. Sci. USA 95, 3996–4001 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Costa, M. R., Bucholz, O., Schroeder, T. & Gotz, M. Late origin of glia-restricted progenitors in the developing mouse cerebral cortex. Cereb. Cortex 19 (suppl. 1), i135–i143 (2009).

    Article  PubMed  Google Scholar 

  89. Wu, S., Wu, Y. & Capecchi, M. R. Motoneurons and oligodendrocytes are sequentially generated from neural stem cells but do not appear to share common lineage-restricted progenitors in vivo . Development 133, 581–590 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Levison, S. W. & Goldman, J. E. Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain. Neuron 10, 201–212 (1993).

    Article  CAS  PubMed  Google Scholar 

  91. Parnavelas, J. G. Glial cell lineages in the rat cerebral cortex. Exp. Neurol. 156, 418–429 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Zhao, J. W., Raha-Chowdhury, R., Fawcett, J. W. & Watts, C. Astrocytes and oligodendrocytes can be generated from NG2+ progenitors after acute brain injury: intracellular localization of oligodendrocyte transcription factor 2 is associated with their fate choice. Eur. J. Neurosci. 29, 1853–1869 (2009).

    Article  PubMed  Google Scholar 

  93. Tatsumi, K. et al. Genetic fate mapping of Olig2 progenitors in the injured adult cerebral cortex reveals preferential differentiation into astrocytes. J. Neurosci. Res. 86, 3494–3502 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Menn, B. et al. Origin of oligodendrocytes in the subventricular zone of the adult brain. J. Neurosci. 26, 7907–7918 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jablonska, B. et al. Chordin-induced lineage plasticity of adult SVZ neuroblasts after demyelination. Nature Neurosci. 13, 541–550 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Raymond, C. S. & Soriano, P. High-efficiency FLP and ΦC31 site-specific recombination in mammalian cells. PLoS ONE 2, e162 (2007).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  97. Zong, H., Espinosa, J. S., Su, H. H., Muzumdar, M. D. & Luo, L. Mosaic analysis with double markers in mice. Cell 121, 479–492 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  99. Pringle, N. P. et al. Fgfr3 expression by astrocytes and their precursors: evidence that astrocytes and oligodendrocytes originate in distinct neuroepithelial domains. Development 130, 93–102 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Shibata, T. et al. Glutamate transporter GLAST is expressed in the radial glia–astrocyte lineage of developing mouse spinal cord. J. Neurosci. 17, 9212–9219 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Owada, Y., Yoshimoto, T. & Kondo, H. Spatio-temporally differential expression of genes for three members of fatty acid binding proteins in developing and mature rat brains. J. Chem. Neuroanat. 12, 113–122 (1996).

    Article  CAS  PubMed  Google Scholar 

  102. Stolt, C. C. et al. The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev. 17, 1677–1689 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fu, H. et al. A genome-wide screen for spatially restricted expression patterns identifies transcription factors that regulate glial development. J. Neurosci. 29, 11399–11408 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Anthony, T. E. & Heintz, N. The folate metabolic enzyme ALDH1L1 is restricted to the midline of the early CNS, suggesting a role in human neural tube defects. J. Comp. Neurol. 500, 368–383 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to those whose work we could not cite owing to space limitations. We thank A. Molofsky for comments and M. Jenner for formatting the manuscript. Work in our laboratories is supported by grants from the National Institutes of Health (A.R.K. and D.H.R.) and the California Institute for Regenerative Medicine (A.R.K.). D.H.R. is a Howard Hughes Medical Institute investigator.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowitch, D., Kriegstein, A. Developmental genetics of vertebrate glial–cell specification. Nature 468, 214–222 (2010). https://doi.org/10.1038/nature09611

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09611

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing