Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Induction of lipogenesis in white fat during cold exposure in mice: link to lean phenotype

A Corrigendum to this article was published on 06 June 2017

Abstract

Background/objective:

Futile substrate cycling based on lipolytic release of fatty acids (FA) from intracellular triacylglycerols (TAG) and their re-esterification (TAG/FA cycling), as well as de novo FA synthesis (de novo lipogenesis (DNL)), represent the core energy-consuming biochemical activities of white adipose tissue (WAT). We aimed to characterize their roles in cold-induced thermogenesis and energy homeostasis.

Methods:

Male obesity-resistant A/J and obesity-prone C57BL/6J mice maintained at 30 °C were exposed to 6 °C for 2 or 7 days. In epididymal WAT (eWAT), TAG synthesis and DNL were determined using in vivo 2H incorporation from 2H2O into tissue TAG and nuclear magnetic resonance spectroscopy. Quantitative real-time-PCR and/or immunohistochemistry and western blotting were used to determine the expression of selected genes and proteins in WAT and liver.

Results:

The mass of WAT depots declined during cold exposure (CE). Plasma levels of TAG and non-esterified FA were decreased by day 2 but tended to normalize by day 7 of CE. TAG synthesis (reflecting TAG/FA cycle activity) gradually increased during CE. DNL decreased by day 2 of CE but increased several fold over the control values by day 7. Expression of genes involved in lipolysis, glyceroneogenesis, FA re-esterification, FA oxidation and mitochondrial biogenesis in eWAT was induced during CE. All these changes were more pronounced in obesity-resistant A/J than in B6 mice and occurred in the absence of uncoupling protein 1 in eWAT. Expression of markers of glyceroneogenesis in eWAT correlated negatively with hepatic FA synthesis by day 7 in both strains. Leptin and fibroblast growth factor 21 plasma levels were differentially affected by CE in the two mouse strains.

Conclusions:

Our results indicate integrated involvement of (i) TAG/FA cycling and DNL in WAT, and (ii) hepatic very-low-density lipoprotein-TAG synthesis in the control of blood lipid levels and provision of FA fuels for thermogenesis in cold. They suggest that lipogenesis in WAT contributes to a lean phenotype.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Cinti S . The adipose organ. Prostaglandins Leukot Essent Fatty Acids 2005; 73: 9–15.

    Article  CAS  Google Scholar 

  2. Cannon B, Nedergaard J . Brown adipose tissue: function and physiological significance. Physiol Rev 2004; 84: 277–359.

    Article  CAS  Google Scholar 

  3. Mottillo EP, Balasubramanian P, Lee YH, Weng C, Kershaw EE, Granneman JG . Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic beta3-adrenergic receptor activation. J Lipid Res 2014; 55: 2276–2286.

    Article  CAS  Google Scholar 

  4. Granneman JG, Burnazi M, Zhu Z, Schwamb LA . White adipose tissue contributes to UCP1-independent thermogenesis. Am J Physiol Endocrinol Metab 2003; 285: E1230–E1236.

    Article  CAS  Google Scholar 

  5. Meyer CW, Willershauser M, Jastroch M, Rourke BC, Fromme T, Oelkrug R et al. Adaptive thermogenesis and thermal conductance in wild-type and UCP1-KO mice. Am J Physiol Regul Integr Comp Physiol 2010; 299: R1396–R1406.

    Article  CAS  Google Scholar 

  6. Grujic D, Susulic VS, Harper ME, Himms-Hagen J, Cunninghma BA, Corkey BC et al. Beta3-adrenergic receptors on white and brown adipocytes mediate beta3-selective agonist-induced effects on energy expenditure, insulin secretion, and food intake. A study using transgenic and gene knockout mice. J Biol Chem 1997; 272: 17686–17693.

    Article  CAS  Google Scholar 

  7. Ukropec J, Anunciado RP, Ravussin Y, Hulver MW, Kozak LP . UCP1-independent thermogenesis in white adipose tissue of cold-acclimated Ucp1-/- mice. J Biol Chem 2006; 281: 31894–31908.

    Article  CAS  Google Scholar 

  8. Flachs P, Ruhl R, Hensler M, Janovska P, Zouhar P, Kus V et al. Synergistic induction of lipid catabolism and anti-inflammatory lipids in white fat of dietary obese mice in response to calorie restriction and n-3 fatty acids. Diabetologia 2011; 54: 2626–2638.

    Article  CAS  Google Scholar 

  9. Flachs P, Rossmeisl M, Kuda O, Kopecky J . Stimulation of mitochondrial oxidative capacity in white fat independent of UCP1: a key to lean phenotype. Biochim Biophys Acta 2013; 1831: 986–1003.

    Article  CAS  Google Scholar 

  10. Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 2004; 306: 1383–1386.

    Article  CAS  Google Scholar 

  11. Reshef L, Olswang Y, Cassuto H, Blum B, Croniger CM, Kalhan SC et al. Glyceroneogenesis and the triglyceride/fatty acid cycle. J Biol Chem 2003; 278: 30413–30416.

    Article  CAS  Google Scholar 

  12. Newsholme EA, Crabtree B . Substrate cycles: their metabolic energy and thermic consequences in man. Biochem Soc Symp 1976; 43: 183–205.

    Google Scholar 

  13. Nye C, Kim J, Kalhan SC, Hanson RW . Reassessing triglyceride synthesis in adipose tissue. Trends Endocrinol Metab 2008; 19: 356–361.

    Article  CAS  Google Scholar 

  14. Bederman IR, Foy S, Chandramouli V, Alexander JC, Previs SF . Triglyceride synthesis in epididymal adipose tissue: contribution of glucose and non-glucose carbon sources. J Biol Chem 2009; 284: 6101–6108.

    Article  CAS  Google Scholar 

  15. Beale EG, Hammer RE, Antoine B, Forest C . Glyceroneogenesis comes of age. FASEB J 2002; 16: 1695–1696.

    Article  CAS  Google Scholar 

  16. Trayhurn P . Fatty acid synthesis in mouse brown adipose tissue. The influence of enviromental temperature on the proportion of whole-body fatty acid synthesis in brown adipose tissue and the liver. Biochim Biophys Acta 1981; 664: 549–560.

    Article  CAS  Google Scholar 

  17. Collins S, Daniel KW, Petro AE, Surwit RS . Strain-specific response to beta3-adrenergic receptor agonist treatment of diet-induced obesity in mice. Endocrinology 1997; 138: 405–413.

    Article  CAS  Google Scholar 

  18. Guerra C, Koza RA, Yamashita H, King KW, Kozak LP . Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J Clin Invest 1998; 102: 412–420.

    Article  CAS  Google Scholar 

  19. Watson PM, Commins SP, Beiler RJ, Hatcher HC, Gettys TW . Differential regulation of leptin expression and function in A/J vs. C57BL/6J mice during diet-induced obesity. Am J Physiol Endocrinol Metab 2000; 279: E356–E365.

    Article  CAS  Google Scholar 

  20. Haramizu S, Nagasawa A, Ota N, Hase T, Tokimitsu I, Murase T . Different contribution of muscle and liver lipid metabolism to endurance capacity and obesity susceptibility of mice. J Appl Physiol 2009; 106: 871–879.

    Article  CAS  Google Scholar 

  21. Kus V, Prazak T, Brauner P, Hensler M, Kuda O, Flachs P et al. Induction of muscle thermogenesis by high-fat diet in mice: association with obesity-resistance. Am J Physiol Endocrinol Metab 2008; 295: E356–E367.

    Article  CAS  Google Scholar 

  22. Bardova K, Horakova O, Janovska P, Hansikova J, Kus V, van Schothorst EM et al. Early differences in metabolic flexibility between obesity-resistant and obesity-prone mice. Biochimie 2016; 124: 163–170.

    Article  CAS  Google Scholar 

  23. Walden TB, Hansen IR, Timmons JA, Cannon B, Nedergaard J . Recruited vs. nonrecruited molecular signatures of brown, 'brite', and white adipose tissues. Am J Physiol Endocrinol Metab 2012; 302: E19–E31.

    Article  CAS  Google Scholar 

  24. Kuda O, Jelenik T, Jilkova Z, Flachs P, Rossmeisl M, Hensler M et al. n-3 Fatty acids and rosiglitazone improve insulin sensitivity through additive stimulatory effects on muscle glycogen synthesis in mice fed a high-fat diet. Diabetologia 2009; 52: 941–951.

    Article  CAS  Google Scholar 

  25. Duarte JA, Carvalho F, Pearson M, Horton JD, Browning JD, Jones JG et al. A high-fat diet suppresses de novo lipogenesis and desaturation but not elongation and triglyceride synthesis in mice. J Lipid Res 2014; 55: 2541–2553.

    Article  CAS  Google Scholar 

  26. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  27. Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ et al. FGF-21 as a novel metabolic regulator. J Clin Invest 2005; 115: 1627–1635.

    Article  CAS  Google Scholar 

  28. Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M, Mampel T et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem 2011; 286: 12983–12990.

    Article  CAS  Google Scholar 

  29. Giordano A, Frontini A, Murano I, Tonello C, Marino MA, Carruba MO et al. Regional-dependent increase of sympathetic innervation in rat white adipose tissue during prolonged fasting. J Histochem Cytochem 2005; 53: 679–687.

    Article  CAS  Google Scholar 

  30. Hashimoto T, Segawa H, Okuno M, Kano H, Hamaguchi HO, Haraguchi T et al. Active involvement of micro-lipid droplets and lipid-droplet-associated proteins in hormone-stimulated lipolysis in adipocytes. J Cell Sci 2012; 125 (Pt 24): 6127–6136.

    Article  CAS  Google Scholar 

  31. Yen CL, Stone SJ, Koliwad S, Harris C, Farese RV Jr . Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res 2008; 49: 2283–2301.

    Article  CAS  Google Scholar 

  32. Ogawa Y, Kurosu H, Yamamoto M, Nandi A, Rosenblatt KP, Goetz R et al. BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci USA 2007; 104: 7432–7437.

    Article  CAS  Google Scholar 

  33. Garofalo MAR, Kettelhut C, Roselino JES, Migliorini RH . Effect of acute cold exposure on norepinephrine turnover in rat white adipose tissue. J Auton Nerv Syst 1996; 60: 206–208.

    Article  CAS  Google Scholar 

  34. Young JB, Landsberg L . Effect of diet and cold exposure on norepinephrine turnover in pancreas and liver. Am J Physiol 1979; 236: E524–E533.

    CAS  PubMed  Google Scholar 

  35. Geerling JJ, Boon MR, Kooijman S, Parlevliet ET, Havekes LM, Romijn JA et al. Sympathetic nervous system control of triglyceride metabolism: novel concepts derived from recent studies. J Lipid Res 2014; 55: 180–189.

    Article  CAS  Google Scholar 

  36. Herman MA, Peroni OD, Villoria J, Schon MR, Abumrad NA, Bluher M et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 2012; 484: 333–338.

    Article  CAS  Google Scholar 

  37. Czech MP, Tencerova M, Pedersen DJ, Aouadi M . Insulin signalling mechanisms for triacylglycerol storage. Diabetologia 2013; 56: 949–964.

    Article  CAS  Google Scholar 

  38. Bezaire V, Mairal A, Ribet C, Lefort C, Girousse A, Jocken J et al. Contribution of adipose triglyceride lipase and hormone-sensitive lipase to lipolysis in hMADS adipocytes. J Biol Chem 2009; 284: 18282–18291.

    Article  CAS  Google Scholar 

  39. Mottillo EP, Bloch AE, Leff T, Granneman JG . Lipolytic products activate peroxisome proliferator-activated receptor (PPAR) alpha and delta in brown adipocytes to match fatty acid oxidation with supply. J Biol Chem 2012; 287: 25038–25048.

    Article  CAS  Google Scholar 

  40. Kim SJ, Tang T, Abbott M, Viscarra JA, Wang Y, Sul HS . AMPK phosphorylates desnutrin/ATGL and hormone-sensitive lipase to regulate lipolysis and fatty acid oxidation within adipose tissue. Mol Cell Biol 2016; 36: 1961–1976.

    Article  CAS  Google Scholar 

  41. MacPherson RE, Dragos SM, Ramos S, Sutton C, Frendo-Cumbo S, Castellani L et al. Reduced ATGL-mediated lipolysis attenuates beta adrenergic induced AMPK signaling but not the induction of PKA targeted genes in adipocytes and adipose. Am J Physiol Cell Physiol 2016; 311: C269–C276.

    Article  Google Scholar 

  42. Rohm M, Schafer M, Laurent V, Ustunel BE, Niopek K, Algire C et al. An AMP-activated protein kinase-stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nat Med 2016; 22: 1120–1130.

    Article  CAS  Google Scholar 

  43. Chau MD, Gao J, Yang Q, Wu Z, Gromada J . Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway. Proc Natl Acad Sci USA 2010; 107: 12553–12558.

    Article  CAS  Google Scholar 

  44. Adams AC, Yang C, Coskun T, Cheng CC, Gimeno RE, Luo Y et al. The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue. Mol Metab 2012; 2: 31–37.

    Article  CAS  Google Scholar 

  45. Foster DO, Frydman ML . Nonshivering thermogenesis in the rat. II. Measurements of blood flow with microspheres point to brown adipose tissue as the dominant site of the calorigenesis induced by noradrenaline. Can J Physiol Pharmacol 1978; 56: 110–122.

    Article  CAS  Google Scholar 

  46. Kozak LP . Brown fat and the myth of diet-induced thermogenesis. Cell Metab 2010; 11: 263–267.

    Article  CAS  Google Scholar 

  47. Muzik O, Mangner TJ, Leonard WR, Kumar A, Janisse J, Granneman JG . 15O PET measurement of blood flow and oxygen consumption in cold-activated human brown fat. J Nucl Med 2013; 54: 523–531.

    Article  CAS  Google Scholar 

  48. Hall D, Poussin C, Velagapudi VR, Empsen C, Joffraud M, Beckmann JS et al. Peroxisomal and microsomal lipid pathways associated with resistance to hepatic steatosis and reduced pro-inflammatory state. J Biol Chem 2010; 285: 31011–31023.

    Article  CAS  Google Scholar 

  49. Khedoe PP, Hoeke G, Kooijman S, Dijk W, Buijs JT, Kersten S et al. Brown adipose tissue takes up plasma triglycerides mostly after lipolysis. J Lipid Res 2015; 56: 51–59.

    Article  CAS  Google Scholar 

  50. Mantha L, Deshaies Y . beta-Adrenergic modulation of triglyceridemia under increased energy expenditure. Am J Physiol 1998; 274 (6 Pt 2): R1769–R1776.

    CAS  PubMed  Google Scholar 

  51. Olswang Y, Cohen H, Papo O, Cassuto H, Croniger CM, Hakimi P et al. A mutation in the peroxisome proliferator-activated receptor gamma -binding site in the gene for the cytosolic form of phosphoenolpyruvate carboxykinase reduces adipose tissue size and fat content in mice. Proc Natl Acad Sci USA 2002; 99: 625–630.

    Article  CAS  Google Scholar 

  52. Chascione C, Elwyn DH, Davila M, Gil KM, Askanazi J, Kinney JM . Effect of carbohydrate intake on de novo lipogenesis in human adipose tissue. Am J Physiol 1987; 253 (6 Pt 1): E664–E669.

    CAS  Google Scholar 

  53. Bjorntorp P, Schersten T, Gottfries A . Effects of glucose infusions on adipose tissue lipogenesis in man. Acta Med Scand 1968; 183: 565–571.

    Article  CAS  Google Scholar 

  54. Trayhurn P, Duncan JS, Rayner DV . Acute cold-induced suppression of ob (obese) gene expression in white adipose tissue of mice: meditation by the sympathetic system. Biochem J 1995; 311: 729–733.

    Article  CAS  Google Scholar 

  55. Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med 2011; 17: 200–205.

    Article  CAS  Google Scholar 

  56. Janovska P, Flachs P, Kazdova L, Kopecky J . Anti-obesity effect of n-3 polyunsaturated fatty acids in mice fed high-fat diet is independent of cold-induced thermogenesis. Physiol Res 2013; 62: 153–161.

    CAS  PubMed  Google Scholar 

  57. Bruss MD, Khambatta CF, Ruby MA, Aggarwal I, Hellerstein MK . Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates. Am J Physiol Endocrinol Metab 2010; 298: E108–E116.

    Article  CAS  Google Scholar 

  58. Trayhurn P . Fatty acid synthesis in vivo in brown adipose tissue, liver and white adipose tissue of the cold-acclimated rat. FEBS Lett 1979; 104: 13–16.

    Article  CAS  Google Scholar 

  59. Labbe SM, Caron A, Chechi K, Laplante M, Lecomte R, Richard D . Metabolic activity of brown, 'beige' and white adipose tissues in response to chronic adrenergic stimulation in male mice. Am J Physiol Endocrinol Metab 2016; 311: E260–E268.

    Article  Google Scholar 

  60. Hankir MK, Cowley MA, Fenske WK . A BAT-centric approach to the treatment of diabetes: turn on the brain. Cell Metab 2016; 24: 1–10.

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the Czech Science Foundation (13-00871S) and the EU FP7 project DIABAT (HEALTH-F2-2011-278373). We thank J Bemova, S Hornova and D Salkova (Institute of Physiology CAS, Prague) for technical assistance; D Grahame Hardie (University of Dundee, UK) for the sheep AMPKα1 and AMPKα2 antibodies; James G Granneman (Wayne State University School of Medicine, MI, USA) for the advice regarding the TAG turnover and DNL activity measurements; Z Drahota for the useful consultations; Arild Rustan (University of Oslo, Norway) for critical reading of the manuscript; and the Reviewer for all the comments, namely, those regarding the integrated involvement of FA oxidation and TAG/FA cycling in energy dissipation in WAT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Kopecky.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flachs, P., Adamcova, K., Zouhar, P. et al. Induction of lipogenesis in white fat during cold exposure in mice: link to lean phenotype. Int J Obes 41, 372–380 (2017). https://doi.org/10.1038/ijo.2016.228

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2016.228

This article is cited by

Search

Quick links