Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the nucleosome core particle at 2.8 Å resolution

Abstract

The X-ray crystal structure of the nucleosome core particle of chromatin shows in atomic detail how the histone protein octamer is assembled and how 146 base pairs of DNA are organized into a superhelix around it. Both histone/histone and histone/DNA interactions depend on the histone fold domains and additional, well ordered structure elements extending from this motif. Histone amino-terminal tails pass over and between the gyres of the DNA superhelix to contact neighbouring particles. The lack of uniformity between multiple histone/DNA-binding sites causes the DNA to deviate from ideal superhelix geometry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nucleosome core particle: ribbon traces for the 146-bp DNA phosphodiester backbones (brown and turquoise) and eight histone protein main chains (blue: H3; green: H4; yellow: H2A; red: H2B.
Figure 2: H3–H4 histone-fold pair.
Figure 3: Histone tails between DNA gyres.
Figure 4: Central DNA base pairs.

Similar content being viewed by others

References

  1. Kornberg, R. D. Structure of chromatin. Annu. Rev. Biochem. 46, 931–954 (1977).

    Article  CAS  Google Scholar 

  2. McGhee, J. D. & Felsenfeld, G. Nucleosome structure. Annu. Rev. Biochem. 49, 1115–1156 (1980).

    Article  CAS  Google Scholar 

  3. Widom, J. Toward a unified model of chromatin folding. Annu. Rev. Biophys. Biophys. Chem. 18, 365–395 (1989).

    Article  CAS  Google Scholar 

  4. van Holde, K. E. Chromatin(Springer, New York, (1988).

    Google Scholar 

  5. Blank, T. A. & Becker, P. B. The effect of nucleosome phasing sequences and DNA topology on nucleosome spacing. J. Mol. Biol. 260, 1–8 (1996).

    Article  CAS  Google Scholar 

  6. Wallrath, L. L., Lu, Q., Granok, H. & Elgin, S. C. R. Architectural variations of inducible eukaryotic promoters: Preset and remodeling chromatin structures. BioEssays 16, 165–170 (1994).

    Article  CAS  Google Scholar 

  7. Flaus, A., Luger, K., Tan, S. & Richmond, T. J. Mapping nucleosome position at single base-pair resolution by using site-directed hydroxyl radicals. Proc. Natl Acad. Sci. USA 93, 1370–1375 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Travers, A. A. DNA bending and nucleosome positioning. Trends Biochem. Sci. 12, 108–112 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Flaus, A. & Richmond, T. J. Positioning and stability of nucleosomes on MMTV 3′ LTR sequences. J. Mol. Biol.(in the press).

  10. Wasylyk, B. & Chambon, P. Transcription by eukaryotic RNA polymerases A and B of chromatin assembled in vitro. Eur. J. Biochem. 98, 317–327 (1979).

    Article  CAS  Google Scholar 

  11. Grunstein, M. Histone function in transcription. Annu. Rev. Cell Biol. 6, 643–678 (1990).

    Article  CAS  Google Scholar 

  12. Paranjape, S. M., Kamakaka, R. T. & Kadonaga, J. T. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu. Rev. Biochem. 63, 265–297 (1994).

    Article  CAS  Google Scholar 

  13. Polach, K. J. & Widom, J. Amodel for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J. Mol. Biol. 258, 800–812 (1996).

    Article  CAS  Google Scholar 

  14. Felsenfeld, G. Chromatin unfolds. Cell 86, 13–19 (1996).

    Article  CAS  Google Scholar 

  15. Schild, C., Claret, F. X., Wahli, W. & Wolffe, A. P. Anucleosome-dependent static loop potentiates estrogen-regulated transcription from the Xenopus vitellogenin-B1 promoter in vitro. EMBO J. 12, 423–433 (1993).

    Article  CAS  Google Scholar 

  16. Truss, M.et al. Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo. EMBO J. 14, 1737–1751 (1995).

    Article  CAS  Google Scholar 

  17. Rhodes, D., Brown, R. S. & Klug, A. Meth. Enzymol. 420–428 (Academic, San Diego, (1989).

    Google Scholar 

  18. Richmond, T. J., Finch, J. T., Rushton, B., Rhodes, D. & Klug, A. Structure of the nucleosome core particle at 7 Å resolution. Nature 311, 532–537 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Finch, J. T. et al. X-ray and electron microscope studies on the nucleosome structure. FEBS Lett. 51, 193–197 (1979).

    Google Scholar 

  20. Arents, G., Burlingame, R. W., Wang, B.-C., Love, W. E. & Moudrianakis, E. N. The nucleosomal core histone octamer at 3.1 Å resolution: A tripartite protein assembly and a left-handed superhelix. Proc. Natl Acad. Sci. USA 88, 10148–10152 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Richmond, T. J., Rechsteiner, T. & Luger, K. Studies of nucleosome structure. Cold Spring Harbor Symp. Quant. Biol. LVIII, 265–272 (1993).

    Article  Google Scholar 

  22. Richmond, T. J., Searles, M. A. & Simpson, R. T. Crystals of a nucleosome core particle containing defined sequence DNA. J. Mol. Biol. 199, 161–170 (1988).

    Article  CAS  Google Scholar 

  23. Luger, K., Rechsteiner, T. J., Flaus, A., Waye, M. M. Y. & Richmond, T. J. Characterization of nucleosome core particles containing histone proteins made in bacteria. J. Mol. Biol.(in the press).

  24. Camerini-Otero, R. D. & Felsenfeld, G. Sulfhydryl modificaiton of nucleosome. Proc. Natl Acad. Sci. USA 74, 5519–5523 (1977).

    Article  ADS  CAS  Google Scholar 

  25. Harp, J. M. et al. X-ray diffraction analysis of crystals containing twofold symmetric nucleosome core particles. Acta Crystallogr. D 52, 283–288 (1996).

    Article  CAS  Google Scholar 

  26. Satchwell, S. C., Drew, H. R. & Travers, A. A. Sequence periodicities in chicken nucleosome core DNA. J. Mol. Biol. 191, 659–675 (1986).

    Article  CAS  Google Scholar 

  27. Rhodes, D. & Klug, A. Sequence-dependent helical periodicity of DNA. Nature 292, 378–380 (1981).

    Article  ADS  CAS  Google Scholar 

  28. Dickerson, R. E., Goodsell, D. S. & Neidle, S. “⃛ The tyranny of the lattice⃛”. Proc. Natl Acad. Sci. USA 91, 3579–3583 (1994).

    Article  ADS  CAS  Google Scholar 

  29. Travers, A. A. & Klug, A. in DNA Topology and its Biological Effects(eds Cozzarelli, N. R.&Wang, J. C.) 57–106 (Cold Spring Harbor Press, Cold Spring Harbor, New York, (1990).

    Google Scholar 

  30. Pryciak, P. M. & Varmus, H. E. Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell 69, 769–780 (1992).

    Article  CAS  Google Scholar 

  31. Pruss, D., Bushmann, F. D. & Wolffe, A. P. Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core. Proc. Natl Acad. Sci. USA 91, 5913–5917 (1994).

    Article  ADS  CAS  Google Scholar 

  32. Polach, K. J. & Widom, J. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J. Mol. Biol. 254, 130–149 (1995).

    Article  CAS  Google Scholar 

  33. Studitsky, V. M., Clark, D. J. & Felsenfeld, G. Overcoming a nucleosomal barrier to transcription. Cell 83, 19–27 (1995).

    Article  CAS  Google Scholar 

  34. Hirschhorn, J. N., Brown, S. A., Clark, C. D. & Winston, F. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 6, 2288–2298 (1992).

    Article  CAS  Google Scholar 

  35. Kruger, W. et al. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev. 9, 2770–2779 (1995).

    Article  CAS  Google Scholar 

  36. Finch, J. T. & Klug, A. Solenoidal model for superstructure in chromatin. Proc. Natl Acad. Sci. USA 73, 1897–1901 (1976).

    Article  ADS  CAS  Google Scholar 

  37. Thoma, F., Koller, T. & Klug, A. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J. Cell Biol. 83, 403–427 (1979).

    Article  CAS  Google Scholar 

  38. Widom, J. & Klug, A. Structure of the 300 Å chromatin filament: X-ray diffraction from oriented samples. Cell 43, 207–213 (1985).

    Article  CAS  Google Scholar 

  39. Graziano, V., Gerchman, S. E., Schneider, D. K. & Ramakrishnan, V. Histone H1 is located in the interior of the chromatin 30-nm filament. Nature 368, 351–354 (1994).

    Article  ADS  CAS  Google Scholar 

  40. Hecht, A., Laroche, T., Strahl-Bolsinger, S., Gasser, S. M. & Grunstein, M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: A molecular model for the formation of heterochromatin in yeast. Cell 80, 583–592 (1995).

    Article  CAS  Google Scholar 

  41. Starich, M. R., Sandman, K., Reeve, J. N. & Summers, M. F. NMR structure of HMfB from the hyperthermophile, Methanothermus fervidus, confirms that this archaeal protein is a histone. J. Mol. Biol. 255, 187–203 (1996).

    Article  CAS  Google Scholar 

  42. Xie, X. et al. Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature 380, 316–322 (1996).

    Article  ADS  CAS  Google Scholar 

  43. Yang, T. P., Hansen, S. K., Oishi, K. K., Ryder, O. A. & Hamkalo, B. A. Characterization of a cloned repetitive DNA sequence concentrated on the human X chromosome. Proc. Natl Acad. Sci. USA 79, 6593–6597 (1982).

    Article  ADS  CAS  Google Scholar 

  44. O'Halloran, T. V., Lippard, S. J., Richmond, T. J. & Klug, A. Multiple heavy-atom reagents for macromolecular X-ray structure determination. Application to the nucleosome core particle. J. Mol. Biol. 194, 705–712 (1987).

    Article  CAS  Google Scholar 

  45. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  46. Brünger, A. X-PLOR v3.1 Manual(Yale Univ. Press, New Haven, (1992).

    Google Scholar 

  47. Ferrin, T. E., Huang, C. C., Jarvis, L. E. & Langridge, R. The MIDAS display system. J. Mol. Graph. 6, 13–27 (1988).

    Article  CAS  Google Scholar 

  48. Nicholls, A., Sharp, K. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  49. Read, R. J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  50. Böhm, L. & Crane-Robinson, C. Proteases as structural probes for chromatin: the domain structure of histones. Biosci. Rep. 4, 365–386 (1984).

    Article  Google Scholar 

  51. Goldknopf, I. L. & Busch, H. Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugated-protein A24. Proc. Natl Acad. Sci. USA 74, 864–868 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Halford for the EcoRV enzyme; A. Flaus, T. Rechsteiner and S. Tan for support and discussion; and C. Riekel and his co-workers at ID13 of the ESRF, Grenoble for support and cooperation. This research was supported in part by the Swiss National Fond.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luger, K., Mäder, A., Richmond, R. et al. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997). https://doi.org/10.1038/38444

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/38444

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing