Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of tubulin at 6.5 Å and location of the taxol-binding site

Abstract

TUBULIN, the major component of microtubules, is a heterodimer of two chains, α and β1, both of relative molecular mass 50,000 (Mr50K) and with 40-50% identity. The isotypic variety2 and conformational flexibility of tubulin have so far made it impossible to obtain crystals for X-ray work3. Structural knowledge of tubulin has been limited to about 20 Å from X-ray diffraction of oriented microtubules4, and from electron microscopy of microtubules and zinc-induced crystalline sheets in negative stain5,6. The sheets consist of protofilaments similar to those in microtubules but associated in an antiparallel arrangement7, and their two-dimensional character is ideal for high-resolution electron microscopy8,9. Here we present a three-dimensional reconstruction of tubulin to 6.5 Å resolution, obtained by electron crystallography of zinc-induced two-dimensional crystals of the protein. The α- and β-subunits appear topologically similar, in agreement with their sequence homology10. Several features can be defined in terms of secondary structure. An apparent α-helical portion, adjacent to both interdimer and inter-protofilament contacts, is tentatively attributed to a segment near the carboxy terminus of the protein. We can assign the α- and β-subunits on the basis of projection studies of the binding of taxol*, which show one taxol site per tubulin heterodimer, in agreement with the known stoichiometry of taxol in microtubules11. These studies indicate that taxol affects the interaction between protofilaments; to our knowledge, this is the first time that a ligand-binding site has been visualized in the tubulin molecule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ludueña, R. F., Shooter, E. M. & Wilson, L. J. biol. Chem. 252, 7006–7014 (1977).

    PubMed  Google Scholar 

  2. Ludueña, R. F. Molec. Biol. Cell 44, 445–457 (1993).

    Article  Google Scholar 

  3. Lobert, S. & Correia, J. J. Archs. Biochem. Biophys. 290, 93–102 (1991).

    Article  CAS  Google Scholar 

  4. Beese, L., Stubbs, G. & Cohen, C. J. molec. Biol. 194, 257–264 (1987).

    Article  CAS  Google Scholar 

  5. Amos, L. A. in Microtubules (eds Roberts, K. & Hyams, J. S.) 1–64 (Academic Press, New York, 1974).

    Google Scholar 

  6. Tamm, L. K., Crepeau, R. H. & Edelstein, S. J. J. molec. Biol. 130, 473–492 (1979).

    Article  CAS  Google Scholar 

  7. Amos, L. A. & Baker, T. S. Nature 279, 607–612 (1979).

    Article  ADS  CAS  Google Scholar 

  8. Downing, K. H. & Jontes, J. J. struct. Biol. 109, 152–159 (1992).

    Article  CAS  Google Scholar 

  9. Wolf, S. G., Mosser, G. & Downing, K. H. J. struct. Biol. 111, 190–199 (1994).

    Article  Google Scholar 

  10. Burns, R. G. & Surridge, C. D. in Microtubules (eds Hyams, J. S. & Lloyd, C. W.) 3–32 (Wiley, New York, 1993).

    Google Scholar 

  11. Díaz, J. F. & Andreu, J. M. Biochemistry 32, 2747–2755 (1993).

    Article  Google Scholar 

  12. Kumar, N. J. biol. Chem. 250, 10435–10441 (1981).

    Google Scholar 

  13. Schiff, P. B. & Horwitz, S. B. Proc. natn. Acad. Sci. U.S.A. 77, 1561–1565 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Rowinsky, E. K., Wright, M., Monsarrat, B., Lesser, G. J. & Donerhower, R. C. Cancer Surv. 17, 283–304 (1993).

    CAS  PubMed  Google Scholar 

  15. Schiff, P. B., Fant, J. & Horwitz, S. B. Nature 277, 665–667 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Nogales, E., Wolf, S. G., Zhang, S. & Downing, K. H. J. struct. Biol. (in the press).

  17. Banerjee, A., Roach, M. C., Trcka, P. & Ludueña, R. F. J. biol. Chem. 267, 5625–5630 (1992).

    CAS  PubMed  Google Scholar 

  18. Rao, S., Horwitz, S. B. & Ringel, I. J. natn. Cancer Inst. 84, 785–788 (1992).

    Article  CAS  Google Scholar 

  19. Combeau, C. et al. Biochemistry 33, 6676–6683 (1994).

    Article  CAS  Google Scholar 

  20. Parness, J. & Horowitz, S. B. J. Cell Biol. 91, 479–487 (1981).

    Article  CAS  Google Scholar 

  21. Manfredi, J. J., Parness, J. & Horwitz, S. B. J. Cell Biol. 94, 688–696 (1982).

    Article  CAS  Google Scholar 

  22. Andreu, J. M. et al. J. molec. Biol. 226, 169–184 (1992).

    Article  CAS  Google Scholar 

  23. Díaz, J. F., Menéndez, M. & Andreu, J. M. Biochemistry 32, 10067–10077 (1993).

    Article  Google Scholar 

  24. Howard, W. D. & Timasheff, S. N. J. biol. Chem. 263, 1342–1346 (1988).

    CAS  PubMed  Google Scholar 

  25. Dye, R. B., Fink, S. P. & Williams, R. C. Jr J. biol. Chem. 268, 6847–6850 (1993).

    CAS  PubMed  Google Scholar 

  26. Henderson, R. & Unwin, P. N. Nature 257, 28–32 (1975).

    Article  ADS  CAS  Google Scholar 

  27. Henderson, R. et al. J. molec. Biol. 213, 899–929 (1990).

    Article  CAS  Google Scholar 

  28. Kühlbrandt, W. & Wang, D. N. Nature 350, 130–134 (1991).

    Article  ADS  Google Scholar 

  29. Kühlbrandt, W., Wang, D. N. & Fuiyoshi, Y. Nature 367, 614–621 (1994).

    Article  ADS  Google Scholar 

  30. Mandelkow, E.-M., Thomas, J. & Cohen, C. Proc. natn. Acad. Sci. U.S.A. 74, 3370–3374 (1977).

    Article  ADS  CAS  Google Scholar 

  31. Heuser, J. E. J. Cell Biol. 103, 2209–2227 (1986).

    Article  CAS  Google Scholar 

  32. Kirchner, K. & Mandelkow, E.-M. EMBO J. 4, 2397–2402 (1985).

    Article  CAS  Google Scholar 

  33. Sackett, D. L. & Varma, J. K. Biochemistry 32, 13560–13565 (1993).

    Article  CAS  Google Scholar 

  34. Margolis, R., Rauch, C. T. & Wilson, L. Biochemistry 19, 5550–5557 (1980).

    Article  CAS  Google Scholar 

  35. Palanivelu, P. & Ludueña, R. F. J. biol. Chem. 257, 6311–6315 (1982).

    CAS  PubMed  Google Scholar 

  36. Rao, S., Krauss, N. E., Heerding, J. M., Orr, G. A. & Horwitz, S. B. J. biol. Chem. 269, 3132–3134 (1994).

    CAS  Google Scholar 

  37. Shivanna, B. D., Mejillano, M. R., Williams, T. D. & Himes, R. H. J. biol. Chem. 268, 127–132 (1993).

    CAS  Google Scholar 

  38. Schiff, P. B. & Horwitz, S. B. Biochemistry 20, 3247–3252 (1981).

    Article  CAS  Google Scholar 

  39. Carlier, M.-F. & Pantaloni, D. Biochemistry 22, 4814–4822 (1983).

    Article  CAS  Google Scholar 

  40. Trachtenberg, S. & DeRosier, D. J. J. molec. Biol. 195, 581–601 (1987).

    Article  CAS  Google Scholar 

  41. Fellous, A., Francon, J., Lennon, A. M. & Nuñez, J. Eur. J. Biochem. 78, 167–174 (1977).

    Article  CAS  Google Scholar 

  42. Wang, D. N. & Kühlbrandt, W. J. molec. Biol. 217, 691–699 (1991).

    Article  CAS  Google Scholar 

  43. Downing, K. H. Science 251, 53–59 (1991).

    Article  ADS  CAS  Google Scholar 

  44. Henderson, R., Baldwin, J. M., Downing, K. H., Lepault, J. & Zemlin, F. Ultramicroscopy 19, 147–178 (1986).

    Article  CAS  Google Scholar 

  45. Downing, K. H. Ultramicroscopy 46, 199–206 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nogales, E., Grayer Wolf, S., Khan, I. et al. Structure of tubulin at 6.5 Å and location of the taxol-binding site. Nature 375, 424–427 (1995). https://doi.org/10.1038/375424a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375424a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing