Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ribonuclease E is a 5′-end-dependent endonuclease

Abstract

The selective degradation of messenger RNAs enables cells to regulate the levels of particular mRNAs in response to changes in the environment. Ribonuclease (RNase) E (ref. 1), a single-strand-specific endonuclease2,3,4 that is found in a multi-enzyme complex known as the ‘degradosome’5,6,7, initiates the degradation of many mRNAs in Escherichia coli3,8,9. Its relative lack of sequence specificity and the presence of many potential cleavage sites in mRNA substrates2,3 cannot explain why mRNA decay frequently proceeds in a net 5′-to-3′ direction9,10,11. I have prepared covalently closed circular derivatives of natural substrates, the rpsT mRNA encoding ribosomal protein S20 (ref. 2) and the 9S precursor to 5S ribosomal RNA1,12, and find that these derivatives are considerably more resistant to cleavage in vitro by RNase E than are linear molecules. Moreover, antisense oligo-deoxynucleotides complementary to the 5′ end of linear substrates significantly reduce the latter's susceptibility to attack by RNase E. Finally, natural substrates with terminal 5′-triphosphate groups are poorly cleaved by RNase E in vitro, whereas 5′ monophosphorylated substrates are strongly preferred (compare with ref. 13). These results show that RNase E has inherent vectorial properties, with its activity depending on the 5′ end of its substrates; this can account for the direction of mRNA decay in E. coli, the phenomenon of ‘all or none’ mRNA decay, and the stabilization provided by 5′ stem–loop structures14,15,16,17.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Preparation and characterization of covalently closed circular rpsT mRNA.
Figure 2: Cleavage of circular or linear pt79Hc.
Figure 3: Circular 9S RNA.
Figure 4: Cleavage of heteroduplex or differentially phosphorylated RNAs.

Similar content being viewed by others

References

  1. Misra, T. K. & Apirion, D. RNase E, an RNA processing enzyme from Escherichia coli. J. Biol. Chem. 254, 11154–11159 (1979).

    CAS  PubMed  Google Scholar 

  2. Mackie, G. A. Secondary structure of the mRNA for ribosomal protein S20. J. Biol. Chem. 267, 1054–1061 (1992).

    CAS  PubMed  Google Scholar 

  3. Ehretsmann, C. P., Carpousis, A. J. & Krisch, H. M. Specificity of Escherichia coli endoribonuclease RNase E: in vivo and in vitro analysis of mutants in a bacteriophage T4 mRNA processing site. Genes Dev. 6, 149–159 (1992).

    Article  CAS  Google Scholar 

  4. McDowall, K. J., Lin-Chao, S. & Cohen, S. N. A+U content rather than a particular nucleotide order determines the specificity of RNase E cleavage. J. Biol. Chem. 269, 10790–10796 (1994).

    CAS  PubMed  Google Scholar 

  5. Carpousis, A. J., Van Houwe, G., Ehretsmann, C. & Krisch, H. Copurification of E. coli RNase E and PNPase: evidence for a specific association between two enzymes important in mRNA processing and degradation. Cell 76, 889–900 (1994).

    Article  CAS  Google Scholar 

  6. Miczak, A., Kaberdin, V. R., Wei, C.-L. & Lin-Chao, S. Proteins associated with RNase E in a multicomponent ribonucleolytic complex. Proc. Natl Acad. Sci. USA 93, 3865–3869 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Py, B., Higgins, C. F., Krisch, H. & Carpousis, A. J. ADEAD-box RNA helicase in the Escherichia coli degradosome. Nature 381, 169–172 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Melefors, Ö Lundberg, U. & von Gabain, A. in Control of Messenger RNA Stability (eds Belasco, J.& Brawerman, G.) 53–70 (Academic, San Diego, (1993)).

    Book  Google Scholar 

  9. Nierlich, D. P. & Murakawa, G. J. The decay of bacterial messenger RNA. Progr. Nucleic Acid Res. Mol. Biol. 52, 153–216 (1996).

    Article  CAS  Google Scholar 

  10. Apirion, D. Degradation of RNA in Escherichia coli: a hypothesis. Mol. Gen. Genet. 122, 313–322 (1972).

    Article  Google Scholar 

  11. Kennell, D. in Maximising Gene Expression (eds Reznikoff, W. S.& Gold, L.) 101–142 (Butterworths, Stoneham, MA, (1986)).

    Book  Google Scholar 

  12. Cormack, R. S. & Mackie, G. A. Structural requirements for the processing of Escherichia coli 5S ribosomal RNA by RNase E in vitro. J. Mol. Biol. 228, 1078–1090 (1992).

    Article  CAS  Google Scholar 

  13. Lin-Chao, S. & Cohen, S. N. The rate of processing and degradation of antisense RNA1 regulates the replication of ColE1-type plasmids in vivo. Cell 65, 1233–1242 (1991).

    Article  CAS  Google Scholar 

  14. Emory, S. A., Bouvet, P. & Belasco, J. G. A5′ terminal stem-loop structure can stabilize mRNA in Escherichia coli. Genes Dev. 6, 135–148 (1992).

    Article  CAS  Google Scholar 

  15. Bouvet, P. & Belasco, J. G. Control of RNase E-mediated RNA degradation by 5′-terminal base pairing in E. coli. Nature 360, 488–491 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Hansen, M. J. et al . The ompA 5′ untranslated region impedes a major pathway for mRNA degradation in Escherichia coli. Mol. Microbiol. 12, 707–716 (1994).

    Article  CAS  Google Scholar 

  17. Mackie, G. A., Genereaux, J. G. & Masterman, S. K. Modulation of the activity of RNase E in vitro by RNA sequences and secondary structures 5′ to cleavage sites. J. Biol. Chem. 272, 609–616 (1997).

    Article  CAS  Google Scholar 

  18. Moore, M. J. & Sharp, P. A. Site-specific modification of pre-mRNA: the 2′-hydroxyl groups at splice sites. Science 256, 992–997 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Coburn, G. A. & Mackie, G. A. Reconstitution of the degradation of the mRNA for ribosomal protein S20 with purified enzymes. J. Mol. Biol. 279, 1061–1074 (1998).

    Article  CAS  Google Scholar 

  20. Cormack, R. S., Genereaux, J. G. & Mackie, G. A. RNase E activity is conferred by a single polypeptide: overexpression, purification, and properties of the ams/rne/hmp1 gene product. Proc. Natl Acad. Sci. USA 90, 9006–9010 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Mackie, G. A. Specific endonucleolytic cleavage of the mRNA for ribosomal protein S20 of Escherichia coli requires the product of the ams gene in vivo and in vitro. J. Bacteriol. 173, 2488–2497 (1991).

    Article  CAS  Google Scholar 

  22. Huang, H., Liao, J. & Cohen, S. N. Poly(A)- and poly(U)-specific RNA 3′ tail shortening by E. coli ribonuclease E. Nature 391, 99–102 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Xu, F. & Cohen, S. N. RNA degradation in Escherichia coli regulated by 3′ adenylation and 5′ phosphorylation. Nature 374, 180–183 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Beelman, C. A. et al . An essential component of the decapping enzyme required for normal rates of mRNA turnover. Nature 382, 642–646 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Couttet, P. et al . Messenger RNA deadenylation precedes decapping in mammalian cells. Proc. Natl Acad. Sci. USA 94, 5628–5633 (1997).

    Article  ADS  CAS  Google Scholar 

  26. Zhu, L., Gangopadhyay, T., Padmanabda, K. P. & Deutscher, M. P. Escherichia coli rna gene encoding RNase I: cloning, overexpression, subcellular distribution of the enzyme and use of an rna deletion to identify additional RNases. J. Bacteriol. 172, 3146–3151 (1990).

    Article  CAS  Google Scholar 

  27. Mackie, G. A. & Genereaux, J. G. The role of RNA structure in determining RNase E-dependent cleavage sites in the mRNA for ribosomal protein S20 in vitro. J. Mol. Biol. 234, 998–1012 (1993).

    Article  CAS  Google Scholar 

  28. Stevens, A. An exoribonuclease from Saccharomyces cerevisiae: effect of modifications of 5′ end groups on the hydrolysis of substrates to 5′ mononucleotides. Biochem. Biophys. Res. Commun. 81, 656–661 (1978).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank G. Coburn for preparing degradosomes, A. Prud'homme-Genereux for helping to prepare Fig. 4, members of my laboratory for comments, and the MRC of Canada for an operating grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Mackie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackie, G. Ribonuclease E is a 5′-end-dependent endonuclease. Nature 395, 720–724 (1998). https://doi.org/10.1038/27246

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/27246

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing