Cell
Volume 150, Issue 4, 17 August 2012, Pages 855-866
Journal home page for Cell

Resource
A Genome-Scale Resource for In Vivo Tag-Based Protein Function Exploration in C. elegans

https://doi.org/10.1016/j.cell.2012.08.001Get rights and content
Under an Elsevier user license
open archive

Summary

Understanding the in vivo dynamics of protein localization and their physical interactions is important for many problems in biology. To enable systematic protein function interrogation in a multicellular context, we built a genome-scale transgenic platform for in vivo expression of fluorescent- and affinity-tagged proteins in Caenorhabditis elegans under endogenous cis regulatory control. The platform combines computer-assisted transgene design, massively parallel DNA engineering, and next-generation sequencing to generate a resource of 14,637 genomic DNA transgenes, which covers 73% of the proteome. The multipurpose tag used allows any protein of interest to be localized in vivo or affinity purified using standard tag-based assays. We illustrate the utility of the resource by systematic chromatin immunopurification and automated 4D imaging, which produced detailed DNA binding and cell/tissue distribution maps for key transcription factor proteins.

Highlights

► A genome-wide resource for in vivo expression of tagged proteins was engineered ► The tagged gene alleles provide native protein expression and localization patterns ► Tag-based ChIP provides genome-wide DNA binding site maps for key transcription factors ► Live 4D tracing reveals rapid transcription factor protein localization dynamics

Cited by (0)

8

Present address: Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA