Cell
Volume 124, Issue 3, 10 February 2006, Pages 573-586
Journal home page for Cell

Article
A Class of Membrane Proteins Shaping the Tubular Endoplasmic Reticulum

https://doi.org/10.1016/j.cell.2005.11.047Get rights and content
Under an Elsevier user license
open archive

Summary

How is the characteristic shape of a membrane bound organelle achieved? We have used an in vitro system to address the mechanism by which the tubular network of the endoplasmic reticulum (ER) is generated and maintained. Based on the inhibitory effect of sulfhydryl reagents and antibodies, network formation in vitro requires the integral membrane protein Rtn4a/NogoA, a member of the ubiquitous reticulon family. Both in yeast and mammalian cells, the reticulons are largely restricted to the tubular ER and are excluded from the continuous sheets of the nuclear envelope and peripheral ER. Upon overexpression, the reticulons form tubular membrane structures. The reticulons interact with DP1/Yop1p, a conserved integral membrane protein that also localizes to the tubular ER. These proteins share an unusual hairpin topology in the membrane. The simultaneous absence of the reticulons and Yop1p in S. cerevisiae results in disrupted tubular ER. We propose that these “morphogenic” proteins partition into and stabilize highly curved ER membrane tubules.

Cited by (0)