Skip to main content
Log in

Hedgehog Signaling Pathway and Cancer Therapeutics: Progress to Date

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The Hedgehog (Hh) pathway is a developmental signaling pathway involved in numerous developmental processes, including determination of cell fate, patterning, proliferation, survival, and differentiation. While this pathway is silenced in most adult tissues, aberrant activation of it has been documented in a variety of malignancies. In cancers such as basal cell carcinoma (BCC), ligand-independent mechanisms lead to constitutive Hh pathway activation through mutations in components of the pathway, including patched-1 (PTCH1) or smoothened (SMO). On the contrary, numerous other solid and hematologic tumors have been shown to harbor ligand-dependent activation of the Hh pathway by autocrine or paracrine mechanisms. Given that aberrant Hh pathway signaling has been seen in a number of malignancies, this pathway has been an attractive target for drug development. While the best-characterized approach is to target the SMO receptor, other rational approaches for inhibiting the Hh pathway include inhibiting downstream components or directly binding Hh ligands. In January of 2012, vismodegib, a SMO antagonist, became the first agent to target the Hh pathway to receive approval by the United States Food and Drug Administration (FDA) after this agent showed remarkable activity in phase I and II trials for the treatment of BCC. Despite promising preclinical studies with Hh pathway inhibitors in other malignancies that have suggested a potential role for these agents, attempts to translate this potential to clinical benefit has been disappointing. Future efforts will require further careful interpretation and analysis to determine the potential determinants and predictors of efficacy. Currently, several phase I and II trials evaluating Hh inhibitors in a variety of tumor settings are underway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a–b
Fig. 2a–c

Similar content being viewed by others

References

  1. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92.

    Article  PubMed  CAS  Google Scholar 

  2. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353(16):1659–72.

    Article  PubMed  CAS  Google Scholar 

  3. Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353(16):1673–84.

    Article  PubMed  CAS  Google Scholar 

  4. Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361(10):947–57.

    Article  PubMed  CAS  Google Scholar 

  5. Rosell R, Carcereny E, Gervais R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012;13(3):239–46.

    Article  PubMed  CAS  Google Scholar 

  6. Zhou C, Wu YL, Chen G, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011;12(8):735–42.

    Article  PubMed  CAS  Google Scholar 

  7. Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363(9):809–19.

    Article  PubMed  CAS  Google Scholar 

  8. Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15(23):3059–87.

    Article  PubMed  CAS  Google Scholar 

  9. Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980;287(5785):795–801.

    Google Scholar 

  10. Gupta S, Takebe N, Lorusso P. Targeting the Hedgehog pathway in cancer. Ther Adv Med Oncol. 2010;2(4):237–50.

    Article  PubMed  CAS  Google Scholar 

  11. Palma V, Lim DA, Dahmane N, et al. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development. 2005;132(2):335–44.

    Article  PubMed  CAS  Google Scholar 

  12. van den Brink GR, Bleuming SA, Hardwick JC, et al. Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nat Genet. 2004;36(3):277–82.

    Article  PubMed  Google Scholar 

  13. Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature. 2004;432(7015):324–31.

    Article  PubMed  CAS  Google Scholar 

  14. McMillan R, Matsui W. Molecular pathways: the Hedgehog signaling pathway in cancer. Clin Cancer Res. 2012;18:4883–8.

    Article  PubMed  CAS  Google Scholar 

  15. Hui CC, Angers S. Gli proteins in development and disease. Annu Rev Cell Dev Biol. 2011;27:513–37.

    Article  PubMed  CAS  Google Scholar 

  16. Corbit KC, Aanstad P, Singla V, et al. Vertebrate smoothened functions at the primary cilium. Nature. 2005;437(7061):1018–21.

    Article  PubMed  CAS  Google Scholar 

  17. Scales SJ, de Sauvage FJ. Mechanisms of Hedgehog pathway activation in cancer and implications for therapy. Trends Pharmacol Sci. 2009;30(6):303–12.

    Article  PubMed  CAS  Google Scholar 

  18. Kinzler KW, Bigner SH, Bigner DD, et al. Identification of an amplified, highly expressed gene in a human glioma. Science. 1987;236(4797):70–3.

    Article  PubMed  CAS  Google Scholar 

  19. Gorlin RJ, Goltz RW. Multiple nevoid basal-cell epithelioma, jaw cysts and bifid rib. A syndrome. N Engl J Med. 1960;262:908–12.

    Article  PubMed  CAS  Google Scholar 

  20. Hahn H, Wicking C, Zaphiropoulous PG, et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell. 1996;85(6):841–51.

    Google Scholar 

  21. Johnson RL, Rothman AL, Xie J, et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science. 1996;272(5268):1668–71.

    Article  PubMed  CAS  Google Scholar 

  22. Dahmane N, Lee J, Robins P, et al. Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours. Nature. 1997;389(6653):876–81.

    Article  PubMed  CAS  Google Scholar 

  23. Xie J, Murone M, Luoh SM, et al. Activating smoothened mutations in sporadic basal-cell carcinoma. Nature. 1998;391(6662):90–2.

    Article  PubMed  CAS  Google Scholar 

  24. Kool M, Koster J, Bunt J, et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One. 2008;3(8):e3088.

    Article  PubMed  Google Scholar 

  25. Taylor MD, Liu L, Raffel C, et al. Mutations in SUFU predispose to medulloblastoma. Nat Genet. 2002;31(3):306–10.

    Article  PubMed  CAS  Google Scholar 

  26. Tostar U, Malm CJ, Meis-Kindblom JM, et al. Deregulation of the hedgehog signalling pathway: a possible role for the PTCH and SUFU genes in human rhabdomyoma and rhabdomyosarcoma development. J Pathol. 2006;208(1):17–25.

    Article  PubMed  CAS  Google Scholar 

  27. Berman DM, Karhadkar SS, Maitra A, et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature. 2003;425(6960):846–51.

    Article  PubMed  CAS  Google Scholar 

  28. Varnat F, Duquet A, Malerba M, et al. Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med. 2009;1(6–7):338–51.

    Article  PubMed  CAS  Google Scholar 

  29. Bar EE, Chaudhry A, Lin A, et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells. 2007;25(10):2524–33.

    Article  PubMed  CAS  Google Scholar 

  30. Stecca B, Mas C, Clement V, et al. Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Natl Acad Sci USA. 2007;104(14):5895–900.

    Article  PubMed  CAS  Google Scholar 

  31. Yuan Z, Goetz JA, Singh S, et al. Frequent requirement of hedgehog signaling in non-small cell lung carcinoma. Oncogene. 2007;26(7):1046–55.

    Article  PubMed  CAS  Google Scholar 

  32. Thayer SP, di Magliano MP, Heiser PW, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature. 2003;425(6960):851–6.

    Article  PubMed  CAS  Google Scholar 

  33. Karhadkar SS, Bova GS, Abdallah N, et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature. 2004;431(7009):707–12.

    Article  PubMed  CAS  Google Scholar 

  34. Watkins DN, Berman DM, Burkholder SG, et al. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature. 2003;422(6929):313–7.

    Article  PubMed  CAS  Google Scholar 

  35. Theunissen JW, de Sauvage FJ. Paracrine Hedgehog signaling in cancer. Cancer Res. 2009;69(15):6007–10.

    Article  PubMed  CAS  Google Scholar 

  36. Yauch RL, Gould SE, Scales SJ, et al. A paracrine requirement for hedgehog signalling in cancer. Nature. 2008;455(7211):406–10.

    Article  PubMed  CAS  Google Scholar 

  37. Seeley ES, Carriere C, Goetze T, et al. Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res. 2009;69(2):422–30.

    Article  PubMed  CAS  Google Scholar 

  38. Hegde GV, Peterson KJ, Emanuel K, et al. Hedgehog-induced survival of B-cell chronic lymphocytic leukemia cells in a stromal cell microenvironment: a potential new therapeutic target. Mol Cancer Res. 2008;6(12):1928–36.

    Article  PubMed  CAS  Google Scholar 

  39. Dierks C, Grbic J, Zirlik K, et al. Essential role of stromally induced hedgehog signaling in B-cell malignancies. Nat Med. 2007;13(8):944–51.

    Article  PubMed  CAS  Google Scholar 

  40. Taipale J, Beachy PA. The Hedgehog and Wnt signalling pathways in cancer. Nature. 2001;411(6835):349–54.

    Article  PubMed  CAS  Google Scholar 

  41. Zhang Y, Kalderon D. Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature. 2001;410(6828):599–604.

    Google Scholar 

  42. Dierks C, Beigi R, Guo GR, et al. Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell. 2008;14(3):238–49.

    Article  PubMed  CAS  Google Scholar 

  43. Zhao C, Chen A, Jamieson CH, et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature. 2009;458(7239):776–9.

    Article  PubMed  CAS  Google Scholar 

  44. Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67(3):1030–7.

    Article  PubMed  CAS  Google Scholar 

  45. Liu S, Dontu G, Mantle ID, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66(12):6063–71.

    Article  PubMed  CAS  Google Scholar 

  46. Peacock CD, Wang Q, Gesell GS, et al. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA. 2007;104(10):4048–53.

    Article  PubMed  CAS  Google Scholar 

  47. Chen JK, Taipale J, Cooper MK, et al. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 2002;16(21):2743–8.

    Article  PubMed  CAS  Google Scholar 

  48. Cooper MK, Porter JA, Young KE, et al. Teratogen-mediated inhibition of target tissue response to Shh signaling. Science. 1998;280(5369):1603–7.

    Article  PubMed  CAS  Google Scholar 

  49. Tremblay MR, Nevalainen M, Nair SJ, et al. Semisynthetic cyclopamine analogues as potent and orally bioavailable hedgehog pathway antagonists. J Med Chem. 2008;51(21):6646–9.

    Article  PubMed  CAS  Google Scholar 

  50. Maun HR, Wen X, Lingel A, et al. Hedgehog pathway antagonist 5E1 binds hedgehog at the pseudo-active site. J Biol Chem. 2010;285(34):26570–80.

    Article  PubMed  CAS  Google Scholar 

  51. Stanton BZ, Peng LF, Maloof N, et al. A small molecule that binds Hedgehog and blocks its signaling in human cells. Nat Chem Biol. 2009;5(3):154–6.

    Article  PubMed  CAS  Google Scholar 

  52. Metcalfe C, de Sauvage FJ. Hedgehog fights back: mechanisms of acquired resistance against Smoothened antagonists. Cancer Res. 2011;71(15):5057–61.

    Article  PubMed  CAS  Google Scholar 

  53. Yauch RL, Dijkgraaf GJ, Alicke B, et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science. 2009;326(5952):572–4.

    Article  PubMed  CAS  Google Scholar 

  54. Buonamici S, Williams J, Morrissey M, et al. Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci Transl Med. 2010;2(51):51ra70.

    Article  PubMed  Google Scholar 

  55. Dijkgraaf GJ, Alicke B, Weinmann L, et al. Small molecule inhibition of GDC-0449 refractory smoothened mutants and downstream mechanisms of drug resistance. Cancer Res. 2011;71(2):435–44.

    Article  PubMed  CAS  Google Scholar 

  56. Hyman JM, Firestone AJ, Heine VM, et al. Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proc Natl Acad Sci USA. 2009;106(33):14132–7.

    Article  PubMed  CAS  Google Scholar 

  57. Lauth M, Bergstrom A, Shimokawa T, et al. Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci USA. 2007;104(20):8455–60.

    Article  PubMed  CAS  Google Scholar 

  58. Mazumdar T, Devecchio J, Agyeman A, et al. Blocking Hedgehog survival signaling at the level of the GLI genes induces DNA damage and extensive cell death in human colon carcinoma cells. Cancer Res. 2011;71(17):5904–14.

    Article  PubMed  CAS  Google Scholar 

  59. Mazumdar T, DeVecchio J, Shi T, et al. Hedgehog signaling drives cellular survival in human colon carcinoma cells. Cancer Res. 2011;71(3):1092–102.

    Article  PubMed  CAS  Google Scholar 

  60. Kim J, Lee JJ, Gardner D, et al. Arsenic antagonizes the Hedgehog pathway by preventing ciliary accumulation and reducing stability of the Gli2 transcriptional effector. Proc Natl Acad Sci USA. 2010;107(30):13432–7.

    Article  PubMed  CAS  Google Scholar 

  61. Beauchamp EM, Ringer L, Bulut G, et al. Arsenic trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog/GLI pathway. J Clin Invest. 2011;121(1):148–60.

    Article  PubMed  CAS  Google Scholar 

  62. LoRusso PM, Rudin CM, Reddy JC, et al. Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clinical Cancer Res. 2011;17(8):2502–11.

    Article  CAS  Google Scholar 

  63. Von Hoff DD, LoRusso PM, Rudin CM, et al. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med. 2009;361(12):1164–72.

    Article  Google Scholar 

  64. Lorusso PM, Jimeno A, Dy G, et al. Pharmacokinetic dose-scheduling study of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with locally advanced or metastatic solid tumors. Clin Cancer Res. 2011;17(17):5774–82.

    Article  PubMed  CAS  Google Scholar 

  65. Sekulic A, Migden MR, Oro AE, et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med. 2012;366(23):2171–9.

    Article  PubMed  CAS  Google Scholar 

  66. Tang JY, Mackay-Wiggan JM, Aszterbaum M, et al. Inhibiting the hedgehog pathway in patients with the basal-cell nevus syndrome. N Engl J Med. 2012;366(23):2180–8.

    Article  PubMed  CAS  Google Scholar 

  67. Skvara H, Kalthoff F, Meingassner JG, et al. Topical treatment of basal cell carcinomas in nevoid basal cell carcinoma syndrome with a smoothened inhibitor. J Invest Dermatol. 2011;131(8):1735–44.

    Google Scholar 

  68. Siu LL, Papadopoulos K, Alberts SR, et al. A first-in-human, phase I study of an oral hedgehog (HH) pathway antagonist, BMS-833923 (XL139), in subjects with advanced or metastatic solid tumors. J Clin Oncol. 2010;25(15s):abstr2501.

    Google Scholar 

  69. Rudin CM, Jimeno A, Miller WH, et al. A phase I study of IPI-926, a novel hedgehog pathway inhibitor, in patients (pts) with advanced or metastatic solid tumors. J Clin Oncol. 2011;29(Suppl):Abstr3014.

    Google Scholar 

  70. Rudin CM, Hann CL, Laterra J, et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med. 2009;361(12):1173–8.

    Article  PubMed  CAS  Google Scholar 

  71. Kaye S, Fehrenbacher L, Holloway R, et al. A phase 2, randomized, placebo-controlled study of Hedgehog (Hh) pathway inhibitor GDC-0449 as maintenance therapy in patients with ovarian cancer in 2nd or 3rd complete remission (CR). ESMO Meet Abstr. 2010;21(viii):11.

  72. Berlin JD, Bendell J, Hart LL, et al. A phase 2, randomized, double-blind, placebo-controlled study of Hedgehog pathway inhibitor (Hpi) GDC-0449 in patients with previously untreated metastatic colorectal cancer (MCRC). ESMO Meet Abstr. 2010;21(viii):10.

    Google Scholar 

  73. Curis, Inc. Curis announces Genentech’s phase II clinical trial results of GDC-0449 in combination with avastin (R) and chemotherapy in first-line metastatic colorectal cancer. 2012. http://phx.corporate-ir.net/phoenix.zhtml?c=123198&p=irol-newsArticle&ID=1438731&highlight. Cited 18 Sept 2012.

  74. Olive KP, Jacobetz MA, Davidson CJ, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009;324(5933):1457–61.

    Article  PubMed  CAS  Google Scholar 

  75. Richards DA, Stephenson J, Wolpin BM, et al. A phase Ib trial of IPI-926, a hedgehog pathway inhibitor, plus gemcitabine in patients with metastatic pancreatic cancer. J Clin Oncol. 2012;30(suppl 4):Abstract 213.

  76. Infinity Pharmaceuticals, Inc. Infinity reports update from phase 2 study of saridegib plus gemcitabine in patients with metastatic pancreatic cancer. 2012. http://phx.corporate-ir.net/phoenix.zhtml?c=121941&p=irol-newsArticle&ID=1653550. Cited 18 Sept 2012.

  77. Catenacci DVT, Bahary N, Edelman MJ, et al. A phase IB/randomized phase II study of gemcitabine (G) plus placebo (P) or vismodegib (V), a hedgehog (Hh) pathway inhibitor, in patients (pts) with metastatic pancreatic cancer (PC): interim analysis of a University of Chicago phase II consortium study. J Clin Oncol. 2012;30(suppl):Abstract 4022.

  78. AACR. Inhibiting Hedgehog signaling pathway may improve pancreatic cancer treatment. 2012. http://www.aacr.org/home/public--media/aacr-press-releases.aspx?d=2830. Cited 18 Sept 2012.

  79. AACR. News in brief: inhibiting Hedgehog pathway may aid in pancreatic cancer treatment. Cancer Discov. 2012;2:OF5.

  80. Irvine DA, Copland M. Targeting hedgehog in hematologic malignancy. Blood. 2012;119(10):2196–204.

    Article  PubMed  CAS  Google Scholar 

  81. Jamieson C, Cortes JE, Oehler V, et al. Phase 1 dose-escalation study of PF-04449913, an oral Hedgehog (Hh) inhibitor, in patients with select hematologic malignancies. Blood (ASH Annu Meet Abstr) 2011;118:Abstract 424.

  82. Lam CW, Xie J, To KF, et al. A frequent activated smoothened mutation in sporadic basal cell carcinomas. Oncogene. 1999;18(3):833–6.

    Article  PubMed  CAS  Google Scholar 

  83. Aszterbaum M, Rothman A, Johnson RL, et al. Identification of mutations in the human PATCHED gene in sporadic basal cell carcinomas and in patients with the basal cell nevus syndrome. J Invest Dermatol. 1998;110(6):885–8.

    Article  PubMed  CAS  Google Scholar 

  84. Wolter M, Reifenberger J, Sommer C, et al. Mutations in the human homologue of the Drosophila segment polarity gene patched (PTCH) in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res. 1997;57(13):2581–5.

    Google Scholar 

  85. Raffel C, Jenkins RB, Frederick L, et al. Sporadic medulloblastomas contain PTCH mutations. Cancer Res. 1997;57(5):842–5.

    PubMed  CAS  Google Scholar 

  86. Zwerner JP, Joo J, Warner KL, et al. The EWS/FLI1 oncogenic transcription factor deregulates GLI1. Oncogene. 2008;27(23):3282–91.

    Article  PubMed  CAS  Google Scholar 

  87. Nolan-Stevaux O, Lau J, Truitt ML, et al. GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation. Genes Dev. 2009;23(1):24–36.

    Article  PubMed  CAS  Google Scholar 

  88. Rajurkar M, De Jesus-Monge WE, Driscoll DR, et al. The activity of Gli transcription factors is essential for Kras-induced pancreatic tumorigenesis. Proc Natl Acad Sci USA. 2012;109(17):E1038–47.

    Article  PubMed  CAS  Google Scholar 

  89. Tian H, Callahan CA, DuPree KJ, et al. Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc Natl Acad Sci USA. 2009;106(11):4254–9.

    Article  PubMed  CAS  Google Scholar 

  90. Queiroz KC, Ruela-de-Sousa RR, Fuhler GM, et al. Hedgehog signaling maintains chemoresistance in myeloid leukemic cells. Oncogene. 2010;29(48):6314–22.

    Article  PubMed  CAS  Google Scholar 

  91. Xu Y, Chenna V, Hu C, et al. Polymeric nanoparticle-encapsulated hedgehog pathway inhibitor HPI-1 (NanoHHI) inhibits systemic metastases in an orthotopic model of human hepatocellular carcinoma. Clin Cancer Res. 2012;18(5):1291–302.

    Article  PubMed  CAS  Google Scholar 

  92. Bhattacharya R, Kwon J, Ali B, et al. Role of hedgehog signaling in ovarian cancer. Clin Cancer Res. 2008;14(23):7659–66.

    Article  PubMed  CAS  Google Scholar 

  93. US National Institutes of Health. ClinicalTrials.gov. 2012. http://www.clinicaltrials.gov.

Download references

Acknowledgments

There was no funding provided in support of the preparation of this manuscript. The authors have no conflicts of interest to report. The authors are the only persons who made contributions to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward J. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruch, J.M., Kim, E.J. Hedgehog Signaling Pathway and Cancer Therapeutics: Progress to Date. Drugs 73, 613–623 (2013). https://doi.org/10.1007/s40265-013-0045-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-013-0045-z

Keywords

Navigation