Skip to main content
Log in

Activity-Dependent Bulk Synaptic Vesicle Endocytosis—A Fast, High Capacity Membrane Retrieval Mechanism

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Central nerve terminals are placed under considerable stress during intense stimulation due to large numbers of synaptic vesicles (SVs) fusing with the plasma membrane. Classical clathrin-dependent SV endocytosis cannot correct for the large increase in nerve terminal surface area in the short term, due to its slow kinetics and low capacity. During such intense stimulation, an additional SV retrieval pathway is recruited called bulk endocytosis. Recent studies have shown that bulk endocytosis fulfils all of the physiological requirements to remedy the acute changes in nerve terminal surface area to allow the nerve terminal to continue to function. This review will summarise the recent developments in the field that characterise the physiology of bulk endocytosis which show that it is a fast, activity-dependent and high capacity mechanism that is essential for the function of central nerve terminals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Royle SJ, Lagnado L (2003) Endocytosis at the synaptic terminal. J Physiol 553:345–355

    Article  PubMed  CAS  Google Scholar 

  2. Murthy VN, De Camilli P (2003) Cell biology of the presynaptic terminal. Ann Rev Neurosci 26:701–728

    Article  PubMed  CAS  Google Scholar 

  3. Granseth B, Odermatt B, Royle SJ, Lagnado L (2006) Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51:773–786

    Article  PubMed  CAS  Google Scholar 

  4. Balaji J, Armbruster M, Ryan TA (2008) Calcium control of endocytic capacity at a CNS synapse. J Neurosci 28:6742–6749

    Article  PubMed  CAS  Google Scholar 

  5. Ceccarelli B, Hurlbut WP, Mauro A (1972) Depletion of vesicles from frog neuromuscular junctions by prolonged tetanic stimulation. J Cell Biol 54:30–38

    Article  PubMed  CAS  Google Scholar 

  6. Ceccarelli B, Hurlbut WP, Mauro A (1973) Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J Cell Biol 57:499–524

    Article  PubMed  CAS  Google Scholar 

  7. Ales E, Tabares L, Poyato JM, Valero V, Lindau M, Alvarez de Toledo G (1999) High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism. Nat Cell Biol 1:40–44

    Article  PubMed  CAS  Google Scholar 

  8. Wang CT, Lu JC, Bai J, Chang PY, Martin TF, Chapman ER, Jackson MB (2003) Different domains of synaptotagmin control the choice between kiss-and-run and full fusion. Nature 424:943–947

    Article  PubMed  CAS  Google Scholar 

  9. Oberhauser AF, Fernandez JM (1996) A fusion pore phenotype in mast cells of the ruby-eye mouse. Proc Natl Acad Sci USA 93:14349–14354

    Article  PubMed  CAS  Google Scholar 

  10. He L, Wu LG (2007) The debate on the kiss-and-run fusion at synapses. Trends Neurosci 30:447–455

    Article  PubMed  CAS  Google Scholar 

  11. Richards DA, Guatimosim C, Betz WJ (2000) Two endocytic recycling routes selectively fill two vesicle pools in frog motor nerve terminals. Neuron 27:551–559

    Article  PubMed  CAS  Google Scholar 

  12. Evans GJ, Cousin MA (2007) Activity-dependent control of slow synaptic vesicle endocytosis by cyclin-dependent kinase 5. J Neurosci 27:401–411

    Article  PubMed  CAS  Google Scholar 

  13. Miller TM, Heuser JE (1984) Endocytosis of synaptic vesicle membrane at the frog neuromuscular junction. J Cell Biol 98:685–698

    Article  PubMed  CAS  Google Scholar 

  14. Richards DA, Guatimosim C, Rizzoli SO, Betz WJ (2003) Synaptic vesicle pools at the frog neuromuscular junction. Neuron 39:529–541

    Article  PubMed  CAS  Google Scholar 

  15. Teng H, Wilkinson RS (2000) Clathrin-mediated endocytosis near active zones in snake motor boutons. J Neurosci 20:7986–7993

    PubMed  CAS  Google Scholar 

  16. Leenders AG, Scholten G, de Lange RP, Lopes Da Silva FH, Ghijsen WE (2002) Sequential changes in synaptic vesicle pools and endosome-like organelles during depolarization near the active zone of central nerve terminals. Neurosci 109:195–206

    Article  CAS  Google Scholar 

  17. Marxen M, Volknandt W, Zimmermann H (1999) Endocytic vacuoles formed following a short pulse of K+-stimulation contain a plethora of presynaptic membrane proteins. Neurosci 94:985–996

    Article  CAS  Google Scholar 

  18. Di Paolo G, Moskowitz HS, Gipson K, Wenk MR, Voronov S, Obayashi M, Flavell R, Fitzsimonds RM, Ryan TA, De Camilli P (2004) Impaired PtdIns(4, 5) P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431:415–422

    Article  PubMed  Google Scholar 

  19. Hayashi M, Raimondi A, O'Toole E, Paradise S, Collesi C, Cremona O, Ferguson SM, De Camilli P (2008) Cell- and stimulus-dependent heterogeneity of synaptic vesicle endocytic recycling mechanisms revealed by studies of dynamin 1-null neurons. Proc Natl Acad Sci USA 105:2175–2180

    Article  PubMed  CAS  Google Scholar 

  20. Holt M, Cooke A, Wu MM, Lagnado L (2003) Bulk membrane retrieval in the synaptic terminal of retinal bipolar cells. J Neurosci 23:1329–1339

    PubMed  CAS  Google Scholar 

  21. de Lange RP, de Roos AD, Borst JG (2003) Two modes of vesicle recycling in the rat calyx of Held. J Neurosci 23:10164–10173

    PubMed  Google Scholar 

  22. Paillart C, Li J, Matthews G, Sterling P (2003) Endocytosis and vesicle recycling at a ribbon synapse. J Neurosci 23:4092–4099

    PubMed  CAS  Google Scholar 

  23. Wu W, Wu LG (2007) Rapid bulk endocytosis and its kinetics of fission pore closure at a central synapse. Proc Natl Acad Sci USA 104:10234–10239

    Article  PubMed  CAS  Google Scholar 

  24. Clayton EL, Evans GJ, Cousin MA (2008) Bulk synaptic vesicle endocytosis is rapidly triggered during strong stimulation. J Neurosci 28:6627–6632

    Article  PubMed  CAS  Google Scholar 

  25. Teng H, Lin MY, Wilkinson RS (2007) Macroendocytosis and endosome processing in snake motor boutons. J Physiol 582:243–262

    Article  PubMed  CAS  Google Scholar 

  26. Sankaranarayanan S, Ryan TA (2000) Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system. Nat Cell Biol 2:197–204

    Article  PubMed  CAS  Google Scholar 

  27. Klee CB, Crouch TH, Krinks MH (1979) Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. Proc Natl Acad Sci USA 76:6270–3

    Article  PubMed  CAS  Google Scholar 

  28. Chan SA, Smith C (2001) Physiological stimuli evoke two forms of endocytosis in bovine chromaffin cells. J Physiol 537:871–885

    Article  PubMed  CAS  Google Scholar 

  29. Kumashiro S, Lu YF, Tomizawa K, Matsushita M, Wei FY, Matsui H (2005) Regulation of synaptic vesicle recycling by calcineurin in different vesicle pools. Neurosci Res 51:435–443

    Article  PubMed  CAS  Google Scholar 

  30. Clayton EL, Cousin MA (2008) Differential labelling of bulk endocytosis in nerve terminals by FM dyes. Neurochem Int 53:51–55

    Article  PubMed  CAS  Google Scholar 

  31. Cousin MA, Robinson PJ (2001) The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis. Trends Neurosci 24:659–665

    Article  PubMed  CAS  Google Scholar 

  32. Koenig JH, Ikeda K (1989) Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J Neurosci 9:3844–3860

    PubMed  CAS  Google Scholar 

  33. Takei K, Mundigl O, Daniell L, De Camilli P (1996) The synaptic vesicle cycle: A single vesicle budding step involving clathrin and dynamin. J Cell Biol 133:1237–1250

    Article  PubMed  CAS  Google Scholar 

  34. Gad H, Low P, Zotova E, Brodin L, Shupliakov O (1998) Dissociation between Ca2+-triggered synaptic vesicle exocytosis and clathrin-mediated endocytosis at a central synapse. Neuron 21:607–616

    Article  PubMed  CAS  Google Scholar 

  35. Kasprowicz J, Kuenen S, Miskiewicz K, Habets RL, Smitz L, Verstreken P (2008) Inactivation of clathrin heavy chain inhibits synaptic recycling but allows bulk membrane uptake. J Cell Biol 182:1007–1016

    Article  PubMed  CAS  Google Scholar 

  36. Heerssen H, Fetter RD, Davis GW (2008) Clathrin dependence of synaptic-vesicle formation at the Drosophila neuromuscular junction. Curr Biol 18:401–409

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Wellcome Trust (Ref: 070569 & 084277) and Epilepsy Research UK (0503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Cousin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cousin, M.A. Activity-Dependent Bulk Synaptic Vesicle Endocytosis—A Fast, High Capacity Membrane Retrieval Mechanism. Mol Neurobiol 39, 185–189 (2009). https://doi.org/10.1007/s12035-009-8062-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-009-8062-3

Keywords

Navigation