Skip to main content

Advertisement

Log in

D-Amino acid oxidase-induced oxidative stress, 3-bromopyruvate and citrate inhibit angiogenesis, exhibiting potent anticancer effects

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Angiogenesis is critical for cancer growth and metastasis. Steps of angiogenesis are energy consuming, while vascular endothelial cells are highly glycolytic. Glioblastoma multiforme (GBM) is a highly vascular tumor and this enhances its aggressiveness. D-amino acid oxidase (DAO) is a promising therapeutic protein that induces oxidative stress upon acting on its substrates. Oxidative stress-energy depletion (OSED) therapy was recently reported (El Sayed et al., Cancer Gene Ther, 19, 1-18, 2012). OSED combines DAO-induced oxidative stress with energy depletion caused by glycolytic inhibitors such as 3-bromopyruvate (3BP), a hexokinase II inhibitor that depleted ATP in cancer cells and induced production of hydrogen peroxide. 3BP disturbs the Warburg effect and antagonizes effects of lactate and pyruvate (El Sayed et al., J Bioenerg Biomembr, 44, 61-79, 2012). Citrate is a natural organic acid capable of inhibiting glycolysis by targeting phosphofructokinase. Here, we report that DAO, 3BP and citrate significantly inhibited angiogenesis, decreased the number of vascular branching points and shortened the length of vascular tubules. OSED delayed the growth of C6/DAO glioma cells. 3BP combined with citrate delayed the growth of C6 glioma cells and decreased significantly the number and size of C6 glioma colonies in soft agar. Human GBM cells (U373MG) were resistant to chemotherapy e.g. cisplatin and cytosine arabinoside, while 3BP was effective in decreasing the viability and disturbing the morphology of U373MG cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abou El-Magd RM, Park HK, Kawazoe T, Iwana S, Ono K, Chung SP et al (2010a) The effect of risperidone on D-amino acid oxidase activity as a hypothesis for a novel mechanism of action in the treatment of schizophrenia. J Psychopharmacol 24(7):1055–1067

    Article  CAS  Google Scholar 

  • Abou El-Magd RM, Sasaki C, Kawazoe T, El Sayed SM, Yorita K, Shishido Y et al (2010b) Bioprocess development of the production of the mutant P-219-L human D-amino acid oxidase for high soluble fraction expression in recombinant Escherichia coli. Biochem Eng J 52(2–3):236–247

    Article  CAS  Google Scholar 

  • Amaral KF, Rogero MM, Fock RA, Borelli P, Gavini G (2007) Cytotoxicity analysis of EDTA and citric acid applied on murine resident macrophages culture. Int Endod J 40(5):338–343

    Article  CAS  Google Scholar 

  • Aronen HJ, Gazit IE, Louis DN, Buchbinder BR, Pardo FS, Weisskoff RM et al (1994) Cerebral blood volume maps of gliomas: a comparison with tumor grade and histologic findings. Radiology 191:41–51

    CAS  Google Scholar 

  • Aronen HJ, Pardo FS, Kennedy DN, Belliveau JW, Packard SD, Hsu DW et al (2000) High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. Clin Canc Res 6:2189–2200

    CAS  Google Scholar 

  • Bachelder RE, Crago A, Chung J, Wendt MA, Shaw LM, Robinson G, Mercurio AM et al (2001) Vascular endothelial growth factor is an autocrine survival factor for neuropilin-expressing breast carcinoma cells. Cancer Res 61:5736–5740

    CAS  Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  CAS  Google Scholar 

  • Brem S, Cotran R, Folkman J (1972) Tumor angiogenesis: a quantitative method for histologic grading. J Natl Canc Inst 48:347–356

    CAS  Google Scholar 

  • Cardone RA, Casavola V, Reshkin SJ (2005) The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 5(10):786–795

    Article  CAS  Google Scholar 

  • Chan CP, Jeng JH, Hsieh CC, Lin CL, Lei D, Chang MC (1999) Morphological alterations associated with the cytotoxic and cytostatic effects of citric acid on cultured human dental pulp cells. J Endod 25(5):354–358

    Article  CAS  Google Scholar 

  • Chung SP, Sogabe K, Park HK, Song Y, Ono K, Abou El-Magd RM et al (2010) Potential cytotoxic effect of hydroxypyruvate produced from D-serine by astroglial D-amino acid oxidase. J Biochem 148(6):743–753

    Article  CAS  Google Scholar 

  • Colen CB, Shen Y, Ghoddoussi F, Yu P, Francis TB, Koch BJ et al (2011) Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study. Neoplasia 13(7):620–632

    CAS  Google Scholar 

  • Di Chiro G, DeLaPaz RL, Brooks RA, Sokoloff L, Kornblith PA, Smith BH et al (1982) Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology 32:1323–1329

    Article  Google Scholar 

  • El Sayed SM, Abou El-Magd RM, Shishido Y, Chung SP, Sakai T, Watanabe H et al (2012a) D-amino acid oxidase gene therapy sensitizes glioma cells to the antiglycolytic effect of 3-bromopyruvate. Cancer Gene Therapy 19:1–18

    Article  CAS  Google Scholar 

  • El Sayed SM, Abou El-Magd RM, Shishido Y, Chung SP, Diem TH, Sakai T et al (2012b) 3-Bromopyruvate antagonizes effects of lactate and pyruvate, synergizes with citrate and exerts novel anti-glioma effects. J Bioenerg Biomembr 44:61–79

    Article  CAS  Google Scholar 

  • Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR et al (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64:3892–3899

    Article  CAS  Google Scholar 

  • Fang J, Sawa T, Akaike T, Maeda H (2002) Tumor-targeted delivery of polyethylene glycol-conjugated D-amino acid oxidase for antitumor therapy via enzymatic generation of hydrogen peroxide. Cancer Res 62:3138–3143

    CAS  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  CAS  Google Scholar 

  • Genç M, Castro Kreder N, Barten-van Rijbroek A, Stalpers LJ, Haveman J (2004) Enhancement of effects of irradiation by gemcitabine in a glioblastoma cell line and cell line spheroids. J Cancer Res Clin Oncol 130:45–51

    Article  Google Scholar 

  • Grobben B, De Deyn PP, Slegers H (2002) Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion. Cell Tissue Res 310(3):257–270

    Article  CAS  Google Scholar 

  • Halabe Bucay A (2009) Hypothesis proved…citric acid (citrate) does improve cancer: a case of a patient suffering from medullary thyroid cancer. Med Hypotheses 73(2):271

    Article  Google Scholar 

  • Hefler LA, Zeillinger R, Grimm C, Sood AK, Cheng WF, Gadducci A et al (2006) Preoperative serum vascular endothelial growth factor as a prognostic parameter in ovarian cancer. Gynecol Oncol 103:512–517

    Article  CAS  Google Scholar 

  • Iwana S, Kawazoe T, Park HK, Tsuchiya K, Ono K, Yorita K, Sakai T, Kusumi T, Fukui K (2008) Chlorpromazine oligomer is a potentially active substance that inhibits human D-amino acid oxidase, product of a susceptibility gene for schizophrenia. J Enzym Inhib Med Chem 23(6):901–911

    Article  CAS  Google Scholar 

  • Kawazoe T, Tsuge H, Pilone MS, Fukui K (2006) Crystal structure of human D-amino acid oxidase: context-dependent variability of the backbone conformation of the VAAGL hydrophobic stretch located at the si-face of the flavin ring. Protein Sci 15(12):2708–2717

    Article  CAS  Google Scholar 

  • Kawazoe T, Park HK, Iwana S, Tsuge H, Fukui K (2007a) Human D-amino acid oxidase: an update and review. Chem Rec 7:305–315

    Article  CAS  Google Scholar 

  • Kawazoe T, Tsuge H, Imagawa T, Aki K, Kuramitsu S, Fukui K (2007b) Structural basis of D-DOPA oxidation by D-amino acid oxidase: alternative pathway for dopamine biosynthesis. Biochem Biophys Res Commun 355(2):385–391

    Article  CAS  Google Scholar 

  • Kelsen D, Hudis C, Niedzwiecki D, Dougherty J, Casper E, Botet J et al (1991) A phase III comparison trial of streptozotocin, mitomycin, and 5-fluorouracil with cisplatin, cytosine arabinoside, and caffeine in patients with advanced pancreatic carcinoma. Cancer 68:965–969

    Article  CAS  Google Scholar 

  • Ko YH, Pedersen PL, Geschwind JF (2001) Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett 173(1):83–91

    Article  CAS  Google Scholar 

  • Krockenberger M, Honig A, Rieger L, Coy JF, Sutterlin M, Kapp M et al (2007) Transketolase-like 1 (TKTL 1) expression correlates with subtypes of ovarian cancer and the presence of distant metastases. (Int J Gynecol Oncol 17:101–106

    Article  CAS  Google Scholar 

  • Lau YK, Murray LB, Houshmandi SS, Xu Y, Gutmann DH, Yu Q (2008) Merlin is a potent inhibitor of glioma growth. Cancer Res 68(14):5733–5742

    Article  CAS  Google Scholar 

  • Linderholm BK, Lindh B, Beckman L, Erlanson M, Edin K, Travelin B et al (2003) Prognostic correlation of basic fibroblast growth factor and vascular endothelial growth factor in 1307 primary breast cancers. Clin Breast Canc 4:340–347

    Article  CAS  Google Scholar 

  • Lopes MB (2003) Angiogenesis in brain tumors. Microsc Res Tech 60:225–230

    Article  CAS  Google Scholar 

  • Lu Y, Zhang X, Zhang H, Lan J, Huang G, Varin E et al (2011) Citrate induces apoptotic cell death: a promising way to treat gastric carcinoma? Anticancer Res 31(3):797–805

    CAS  Google Scholar 

  • Mac M, Nałecz KA (2003) Expression of monocarboxylic acid transporters (MCT) in brain cells. Implication for branched chain alpha-ketoacids transport in neurons. Neurochem Int 43(5):305–309

    Article  CAS  Google Scholar 

  • Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK et al (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15:1311–1333

    Article  CAS  Google Scholar 

  • Mahoney BP, Raghunand N, Baggett B, Gillies RJ (2003) Tumor acidity, ion trapping and chemotherapeutics. I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol 66(7):1207–1218

    Article  CAS  Google Scholar 

  • Malheiros CF, Marques MM, Gavini G (2005) In vitro evaluation of the cytotoxic effects of acid solutions used as canal irrigants. J Endod 31:746–748

    Article  CAS  Google Scholar 

  • Marín-Hernández A, Rodríguez-Enríquez S, Vital-González PA, Flores-Rodríguez FL, Macías-Silva M, Sosa-Garrocho M et al (2006) Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase. FEBS J 273:1975–1988

    Article  Google Scholar 

  • Mazurek S, Grimm H, Oehmke M, Weisse G, Teigelkamp S, Eigenbrodt E (2000) Tumor M2-PK and glutaminolytic enzymes in the metabolic shift of tumor cells. Anticancer Res 20:5151–5154

    CAS  Google Scholar 

  • Mohri M, Nitta H, Yamashita J (2000) Expression of multidrug resistance-associated protein (MRP) in human gliomas. J Neurooncol 49(2):105–115

    Article  CAS  Google Scholar 

  • Nagoba BS, Punpale AS, Ayachit R, Gandhi RC, Wadher BJ (2011) Citric acid treatment of postoperative wound in an operated case of synovial sarcoma of the knee. Int Wound J 8(4):425–427

    Article  Google Scholar 

  • Ono K, Shishido Y, Park HK, Kawazoe T, Iwana S, Chung SP, Abou El-Magd RM, Yorita K, Okano M, Watanabe T, Sano N, Bando Y, Arima K, Sakai T, Fukui K (2009) Potential pathophysiological role of D-amino acid oxidase in schizophrenia: immunohistochemical and in situ hybridization study of the expression in human and rat brain. J Neural Transm 116:1335–1347

    Article  CAS  Google Scholar 

  • Oudard S, Boitier E, Miccoli L, Rousset S, Dutrillaux B, Poupon MF (1997) Gliomas are driven by glycolysis: putative roles of hexokinase, oxidative phosphorylation and mitochondrial ultrastructure. Anticancer Res 17:1903–1911

    CAS  Google Scholar 

  • Park HK, Shishido Y, Ichise-Shishido S, Kawazoe T, Ono K, Iwana S et al (2006) Potential role for astroglial D-amino acid oxidase in extracellular D-serine metabolism and cytotoxicity. J Biochem 139(2):295–304

    Article  CAS  Google Scholar 

  • Plate KH (1999) Mechanisms of angiogenesis in the brain. J Neuropathol Exp Neurol 58:313–320

    Article  CAS  Google Scholar 

  • Qin JZ, Xin H, Nickoloff BJ (2010) 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines. Biochem Biophys Res Commun 28(396):495–500

    Article  Google Scholar 

  • Quintero M, Colombo SL, Godfrey A, Moncada S (2006) Mitochondria as signaling organelles in the vascular endothelium. Proc Natl Acad Sci U S A 103:5379–5384

    Article  CAS  Google Scholar 

  • Rahman R, Smith S, Rahman C, Grundy R (2010) Antiangiogenic therapy and mechanisms of tumor resistance in malignant glioma. Journal of Oncology, 251231

  • Schmidt M, Kammerer U, Segerer S, Cramer A, Kohrenhagen N, Dietl J et al (2008) Glucose metabolism and angiogenesis in granulosa cell tumors of the ovary: activation of Akt, expression of M2PK, TKTL1 and VEGF. Eur J Obstet Gynecol Reprod Biol 139:72–78

    Article  CAS  Google Scholar 

  • Sorensen AG, Emblem KE, Polaskova P, Jennings D, Kim H, Ancukiewicz M et al. (2011) Increased survival of glioblastoma patients who respond to anti-angiogenic therapy with elevated blood perfusion. Cancer Research, in press

  • Stegman LD, Zheng H, Neal ER, Ben-Yoseph O, Pollegioni L, Pilone MS et al (1998) Induction of cytotoxic oxidative stress by D-alanine in brain tumor cells expressing Rhodotorula gracilis D-amino acid oxidase: a cancer gene therapy strategy. Human Gene Therapy 9:185–193

    Article  CAS  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  Google Scholar 

  • Végran F, Boidot R, Michiels C, Sonveaux P, Feron O (2011) Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res 71(7):2550–2560

    Article  Google Scholar 

  • Vredenburgh JJ, Desjardins A, Herndon JE II, Marcello J, Reardon DA, Quinn JA et al (2007) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25:4722–4729

    Article  CAS  Google Scholar 

  • Walker RW, Allen JC (1988) Cisplatin in the treatment of recurrent childhood primary brain tumors. J Clin Oncol 6:62–66

    CAS  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  Google Scholar 

  • Wolff JE, Gnekow AK, Kortmann RD, Pietsch T, Urban C, Graf N et al (2002) Preradiation chemotherapy for pediatric patients with high-grade glioma. Cancer 94:264–271

    Article  CAS  Google Scholar 

  • Xia C, Meng Q, Cao Z, Shi X, Jiang BH (2006) Regulation of angiogenesis and tumor growth by p110 Alpha and AKT1 via VEGF expression. J Cell Physiol 209:56–66

    Article  CAS  Google Scholar 

  • Yousefi S, Owens JW, Cesario TC (2004) Citrate shows specific, dose-dependent lympholytic activity in neoplastic cell lines. Leuk Lymphoma 45(8):1657–1665

    Article  CAS  Google Scholar 

  • Zhang X, Varin E, Allouche S, Lu Y, Poulain L, Icard P (2009) Effect of citrate on malignant pleural mesothelioma cells: a synergistic effect with cisplatin. Anticancer Res 29(4):1249–1254

    CAS  Google Scholar 

  • Zorzano A, Fandos C, Palacín M (2000) Role of plasma membrane transporters in muscle metabolism. Biochem J 349:667–688

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Fukui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Sayed, S.M., El-Magd, R.M.A., Shishido, Y. et al. D-Amino acid oxidase-induced oxidative stress, 3-bromopyruvate and citrate inhibit angiogenesis, exhibiting potent anticancer effects. J Bioenerg Biomembr 44, 513–523 (2012). https://doi.org/10.1007/s10863-012-9455-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-012-9455-y

Keywords

Navigation