Skip to main content
Log in

The Microbial Phyllogeography of the Carnivorous Plant Sarracenia alata

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Carnivorous pitcher plants host diverse microbial communities. This plant–microbe association provides a unique opportunity to investigate the evolutionary processes that influence the spatial diversity of microbial communities. Using next-generation sequencing of environmental samples, we surveyed microbial communities from 29 pitcher plants (Sarracenia alata) and compare community composition with plant genetic diversity in order to explore the influence of historical processes on the population structure of each lineage. Analyses reveal that there is a core S. alata microbiome, and that it is similar in composition to animal gut microfaunas. The spatial structure of community composition in S. alata (phyllogeography) is congruent at the deepest level with the dominant features of the landscape, including the Mississippi river and the discrete habitat boundaries that the plants occupy. Intriguingly, the microbial community structure reflects the phylogeographic structure of the host plant, suggesting that the phylogenetic structure of bacterial communities and population genetic structure of their host plant are influenced by similar historical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, LeRoy CJ, Lonsdorf E, Allan GJ, DiFazio SP, Potts BM, Fischer DG, Gehring CA, Lindroth RL, Marks J, Hart SC, Wimp GM, Wooley SC (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nat Rev Genet 7:510–523

    Article  PubMed  CAS  Google Scholar 

  2. Whitham TG, DiFazio SP, Schweitzer JA, Shuster SM, Allan GJ, Bailey JK, Woolbright SA (2008) Extending genomics to natural communities and ecosystems. Science 320:492–495

    Article  PubMed  CAS  Google Scholar 

  3. Johnson MTJ, Stinchcombe JR (2007) An emerging synthesis between community ecology and evolutionary biology. Trends Ecol Evol 22:250–257

    Article  PubMed  Google Scholar 

  4. Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715

    Article  PubMed  Google Scholar 

  5. Crutsinger GM, Cadotte MW, Sanders NJ (2009) Plant genetics shapes inquiline community structure across spatial scales. Ecol Lett 12:285–292

    Article  PubMed  Google Scholar 

  6. Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliot K, Ford CR, Foster DR, Kloeppel BD, Knoepp JD, Lovett GM, Mohan J, Orwig DA, Rodenhouse NL, Sobczak WV, Stinson KA, Stone JK, Swan CM, Thomspon J, Von HOlle B, Webster JR (2005) Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front Ecol 3:479–486

    Article  Google Scholar 

  7. Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapback R, von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllospher bacteria. Proc Natl Acad Sci USA 106:16428–16433

    Article  PubMed  CAS  Google Scholar 

  8. Schweitzer JA, Bailey JK, Bangert RK, Hart SC, Whitham TG (2007) The role of plant genetic variation in determining above- and belowground microbial communities. In: Bailey MJ, Lilley AK, Timms-Wilson TM, Spencer-Phillips PTN (eds) Microbial Ecology of Arial Plant Surfaces. CABI Publishing, Wallingford pp 109–119

    Google Scholar 

  9. Crutsinger GM, Souza L, Sanders NJ (2008) Intraspecific diversity and dominant genotypes resist plant invasions. Ecol Lett 11:16–23

    PubMed  Google Scholar 

  10. Lankau RA, Strauss SY (2007) Mutual feebacks maintain both genetic and species diversity in a plant community. Science 317:1561–1563

    Article  PubMed  CAS  Google Scholar 

  11. Johnson MTJ, Agrawal AA (2005) Plant genotype and environment interact to shape a diverse arthropod community on evening primrose (Oenothera biennis). Ecology 86:874–885

    Article  Google Scholar 

  12. Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  PubMed  CAS  Google Scholar 

  13. Bailey JK, Lilley AK, Timms-Wilson TM, Spencer-Phillips PTN (2006) Microbial ecology of aerial plant surfaces. CABI, Wallingford

    Book  Google Scholar 

  14. Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science 320:1034–1039

    Article  PubMed  CAS  Google Scholar 

  15. van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  16. Jessup CM, Kassen R, Forde SE, Kerr B, Buckling A, Rainey PB, Bohannan BJM (2004) Big questions, small worlds: microbial model systems in ecology. Trends Ecol Evol 19:189–197

    Article  PubMed  Google Scholar 

  17. Brock TD (1987) The study of microorganism in situ: progress and problems. Symp Soc Gen Microbiol 41:1–17

    Google Scholar 

  18. Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:431–440

    PubMed  CAS  Google Scholar 

  19. Horner-Devine MC, Carney KM, Bohannan BJM (2004) An ecological perspective on bacterial biodiversity. In: Proceedings of the Royal Society of London Series B-Biological Sciences 271:113–122

  20. Cardenas E, Tiedje JM (2008) New tools for discovering and characterizing microbial diversity. Curr Opin Biotechnol 19:544–549

    Article  PubMed  CAS  Google Scholar 

  21. Mardis E (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    Article  PubMed  CAS  Google Scholar 

  22. Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nat Biotechnol 26:1117–1124

    Article  PubMed  CAS  Google Scholar 

  23. Keller M, Hettich R (2009) Environmental Proteomics: a paradigm shift in characterizing microbial activities at the molecular level. Microbiol Mol Biol Rev 73:62–70

    Article  PubMed  CAS  Google Scholar 

  24. Cho JC, Tiedje JM (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 66:5448–5456

    Article  PubMed  CAS  Google Scholar 

  25. Papke RT, Ramsing NB, Bateson MM, Ward DM (2003) Geographical isolation in hot spring cyanobacteria. Environ Microbiol 5:650–659

    Article  PubMed  CAS  Google Scholar 

  26. Hughes Martiny JB, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Øvreås L, Reysenbach A, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112

    Article  Google Scholar 

  27. Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301:976–978

    Article  PubMed  CAS  Google Scholar 

  28. Telford RJ, Vandvik V, Birks HJB (2006) Dispersal limitations matter for microbial morphospecies. Science 312:1015

    Article  PubMed  CAS  Google Scholar 

  29. Baas-Becking LGM (1934) In: van Stockum WP, Zoon NV (eds) Geobiologie of Inleiding Tot de Milieukunde. The Hague, The Netherlands

    Google Scholar 

  30. Lomolino MV, Riddle BR, Brown JH (2005) Biogeography. Sinauer, Sunderland

    Google Scholar 

  31. Biek R, Drummond AJ, Poss M (2006) A virus reveals population structure and recent demographic history of its carnivore host. Science 311:538–541

    Article  PubMed  CAS  Google Scholar 

  32. Wirth T, Myer A, Achtman M (2005) Describing host migrations and origins by means of their microbes. Mol Ecol 14:3289–3306

    Article  PubMed  CAS  Google Scholar 

  33. Zhou J, Xia B, Treves DS, Wu LY, Marsh TL, O’Neill RV, Palumbo AV, Tiedje JM (2002) Spatial and resource factors influencing high microbial diversity in soil. Appl Environ Microbiol 68:326–334

    Article  PubMed  CAS  Google Scholar 

  34. Treves DS, Xia B, Zhou J, Tiedje JM (2003) A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil. Microb Ecol 45:20–28

    Article  PubMed  CAS  Google Scholar 

  35. Buckley HL, Miller TE, Ellison AM, Gotelli NJ (2003) Reverse latitudinal trends in species richness of pitcher-plant food webs. Ecol Lett 6:825–829

    Article  Google Scholar 

  36. Peterson CN, Day S, Wolfe BE, Ellison AM, Kolter R, Pringle A (2008) A keystone predator controls bacterial diversity in the pitcher-plant (Sarracenia purpurea) microecosystem. Environ Microbiol 10:2257–2266

    Article  PubMed  CAS  Google Scholar 

  37. Harvey E, Miller TE (1996) Variance in composition of inquiline communities in leaves of Sarracenia purpurea L on multiple spatial scales. Oecologia 108:562–566

    Article  Google Scholar 

  38. Koopman MM, Fuselier D, Hird S, Carstens B (2010) Bacterial characterization of the carnivorous Pale Pitcher Plant reveals diverse, distinct and time-dependent communities. Appl Environ Microbiol 76:1851–1860

    Article  PubMed  CAS  Google Scholar 

  39. Plummer GL, Jackson TH (1963) Bacterial activities within the sarcophagus of the insectivorous plan, Sarracenia flava. Am Midl Nat 69:462–469

    Article  Google Scholar 

  40. Prankevicius AB, Cameron DM (1991) Bacterial dinitrogen fixation in the leaf of the northern piticher plant (Sarracenia purpurea). Can J Bot Rev Canadienne De Botanique 69:2296–2298

    Article  Google Scholar 

  41. Sheridan PM (1991) What is the identity of the West Gulf Coastal pitcher plant, Sarracenia alata? Carnivorous Plant Newsletter 20:102–110

    Google Scholar 

  42. Koopman MM, Carstens BC (2010) Conservation genetic inferences in the carnivorous pitcher plant Sarracenia alata (Sarraceniaceae). Conservation Genetics (in press)

  43. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  44. Huelsenbeck JP, Huelsenbeck ET, Andolfatto P (2007) Structurama: Bayesian inference of population structure. Bioinformatics (in press)

  45. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  46. Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 136:343–359

    Google Scholar 

  47. Parnell LD, Rompato G, Latta L, Pfrender M, van Nostrand J, He Z, Zhou J, Anderson G, Champine P, Ganesan B, Weimer B, Aziz R (2010) Functional biogeography as evidence of gene transfer in hypersaline microbial communities. PLoS ONE 5:e12919

    Article  PubMed  Google Scholar 

  48. Hamady M, Walker J, Harris J, Gold N, Knight R (2008) Error-correcting barcoded primers allow hundreds of samples to be pyrosequenced in multiplex. Nat Meth 5:235–237

    Article  CAS  Google Scholar 

  49. Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5:e9490. doi:9410.1371/journal.pone.0009490

    Article  PubMed  Google Scholar 

  50. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed  CAS  Google Scholar 

  51. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E Ltd., Plymouth Marine Laboratory, Ivybridge, UK

    Google Scholar 

  52. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    Article  PubMed  CAS  Google Scholar 

  53. Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  54. Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449:811–818

    Article  PubMed  CAS  Google Scholar 

  55. Felsenstein J (2004) Inferring phylogenies. Sinauer Sunderland, Mass

    Google Scholar 

  56. Foissner W (2006) Biologeography and dispersal of microorganisms: a review emphasizing protists. Acta Protozoologica 45:111–136

    Google Scholar 

  57. Fierer N (2008) Microbial biogeography: patterns in microbial diversity across space and time. ASM Press, Washington

    Google Scholar 

  58. Buckley HL, Burns JH, Kneitel JM, Walters EL, Munguia P, Miller E (2004) Small-scale patterns in community structure of Sarracenia purpurea inquilines. Community Ecol 5:1588–2755

    Article  Google Scholar 

  59. Addicott JF (1974) Predation and prey community structure- experimental study of effect of mosquito larvae on protozoan communities of pitcher plants. Ecology 55:475–492

    Article  Google Scholar 

  60. Kneitel JM, Miller TE (2002) Resource and top-predator regulation in the pitcher plant (Sarracenia purpurea) inquiline community. Ecology 83:680–688

    Article  Google Scholar 

  61. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505

    Article  Google Scholar 

  62. Wimp GM, Whitham TG (2001) Biodiversity consequences of predation and host plant hybridization on an aphid-ant mutualism. Ecology 82:440–452

    Google Scholar 

  63. Schweitzer JA, Bailey JK, Fischer DG, LeRoy CJ, Lonsdorf EV, Whitham TG, Hart SC (2008) Heritable relationship between plant genotype and associated soil microorganisms. Ecology 89:773–781

    Article  PubMed  Google Scholar 

  64. Shuster SM, Lonsdorf E, Wimp GM, Bailey JK, Whitham TG (2007) Community heritability measures the evolutionary consequences of indirect genetic effects on community structure. Evolution 60:991–1003

    Google Scholar 

  65. Srivastava DS, Kolasa J, Bengtsson J, Gonzalez A, Lawler SP, Miller TE, Munguia P, Romanuk T, Schneider DC, Trzcinski MK (2004) Are natural microcosms useful model systems for ecology? Trends Ecol Evol 19:379–384

    Article  PubMed  Google Scholar 

  66. Ellison AM, Gotelli NJ (2009) Energetics and the evolution of carnivorous plants—Darwin’s ‘most wonderful plants in the world’. J Exp Biol 60:19–42

    CAS  Google Scholar 

Download references

Acknowledgments

We thank members of the Carstens laboratory, especially Sarah Hird and Daniel Ence for assistance with bioinformatics processing. We thank Brent Christner, Gary King, and Kyle Harms for valuable comments on this project and manuscript. This work has been supported by grants from the LSU Board of Regents Research Competitiveness Grant, the LSU Faculty Research Program, the LSU Pfund program, and the National Science Foundation (DEB 0956069). Sequences are deposited in the NCBI Genbank (accession numbers XXX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan C. Carstens.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

SI Table 1

Distribution of microbial taxonomic and sequence diversity from S. alata across four taxonomic ranks. Eleven phyla, 16 classes, 30 orders, and 76 families are classified using all sequences from all pitchers (sequences assigned to a particular rank that are found in every pitcher are bolded), the number of total sequences at each taxonomic level are listed as well as the abundance distribution between east and western populations. (DOC 139 kb)

SI Fig. 1

(Column A) Distribution of microbial taxonomic diversity from S. alata across four taxonomic ranks. Eleven phyla, 16 classes, 30 orders, and 76 Families. Families are classified using all sequences from all pitchers (names available for supplementary table if deemed necessary). (Column B) Proportion of sequences assigned to a particular rank that are found in every pitcher (black, ubiquitous) vs. not (white, rare). (Column C) Distribution of ubiquitous taxa in S. alata pitchers. Four phyla, four classes, four orders, and three families are represented in every pitcher (DOC 468 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koopman, M.M., Carstens, B.C. The Microbial Phyllogeography of the Carnivorous Plant Sarracenia alata . Microb Ecol 61, 750–758 (2011). https://doi.org/10.1007/s00248-011-9832-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9832-9

Keywords

Navigation