Skip to main content

Advertisement

Log in

Revertant mosaicism in genodermatoses

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Inherited monogenic skin disorders include blistering disorders, inflammatory disorders, and disorders of differentiation or development. In most cases, the skin is broadly involved throughout the affected individual’s lifetime, but rarely, appearance of normal skin clones has been described. In these cases of revertant mosaicism, cells undergo spontaneous correction to ameliorate the effects of genetic mutation. While targeted reversion of genetic mutation would have tremendous therapeutic value, the mechanisms of reversion in the skin are poorly understood. In this review, we provide an overview of genodermatoses that demonstrate widespread reversion and their corrective mechanisms, as well as the current research aimed to understand this “natural gene therapy”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

RM:

Revertant mosaicism

KRT10:

Keratin 10

KRT1:

Keratin 1

KRT14:

Keratin 14

JEB:

Junctional epidermolysis bullosa

IWC:

Ichthyosis with confetti

RDEB:

Recessive dystrophic epidermolysis bullosa

EBS:

Epidermolysis bullosa simplex

References

  1. Milstone LM (2004) Epidermal desquamation. J Dermatol Sci 36(3):131–140

    Article  PubMed  Google Scholar 

  2. Kondrashov FA, Kondrashov AS (2010) Measurements of spontaneous rates of mutations in the recent past and the near future. Philos Trans R Soc Lond B Biol Sci 365(1544):1169–1176

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang X, Ira G, Tercero JA, Holmes AM, Diffley JF, Haber JE (2004) Role of DNA replication proteins in double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol 24(16):6891–6899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cairns J (1975) Mutation selection and the natural history of cancer. Nature 255(5505):197–200

    Article  CAS  PubMed  Google Scholar 

  5. Sharma SV, Bell DW, Settleman J, Haber DA (2007) Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7(3):169–181

    Article  CAS  PubMed  Google Scholar 

  6. Jonkman MF (1999) Revertant mosaicism in human genetic disorders. Am J Med Genet 85(4):361–364.

    Article  CAS  PubMed  Google Scholar 

  7. Yang TP, Stout JT, Konecki DS, Patel PI, Alford RL, Caskey CT (1988) Spontaneous reversion of novel Lesch-Nyhan mutation by HPRT gene rearrangement. Somat Cell Mol Genet 14(3):293–303.

    Article  CAS  PubMed  Google Scholar 

  8. Torres RJ, Puig JG (2007) Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome. Orphanet J Rare Dis 2:48.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gregory JJ Jr, Wagner JE, Verlander PC, Levran O, Batish SD, Eide CR, Steffenhagen A, Hirsch B, Auerbach AD (2001) Somatic mosaicism in Fanconi anemia: evidence of genotypic reversion in lymphohematopoietic stem cells. Proc Natl Acad Sci USA 98(5):2532–2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jonkman MF, Scheffer H, Stulp R, Pas HH, Nijenhuis M, Heeres K, Owaribe K, Pulkkinen L, Uitto J (1997) Revertant mosaicism in epidermolysis bullosa caused by mitotic gene conversion. Cell 88(4):543–551

    Article  CAS  PubMed  Google Scholar 

  11. Wada T, Schurman SH, Otsu M, Garabedian EK, Ochs HD, Nelson DL, Candotti F (2001) Somatic mosaicism in Wiskott–Aldrich syndrome suggests in vivo reversion by a DNA slippage mechanism. Proc Natl Acad Sci USA 98(15):8697–8702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jonkman MF, Castellanos Nuijts M, van Essen AJ (2003) Natural repair mechanisms in correcting pathogenic mutations in inherited skin disorders. Clin Exp Dermatol 28(6):625–631.

    Article  CAS  PubMed  Google Scholar 

  13. Lai-Cheong JE, McGrath JA, Uitto J (2011) Revertant mosaicism in skin: natural gene therapy. Trends Mol Med 17(3):140–148.

    Article  PubMed  Google Scholar 

  14. Kvittingen EA, Rootwelt H, Berger R, Brandtzaeg P (1994) Self-induced correction of the genetic defect in tyrosinemia type I. J Clin Invest 94(4):1657–1661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hastings PJ (2010) Mechanisms of ectopic gene conversion. Genes 1(3):427–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ellis NA, Lennon DJ, Proytcheva M, Alhadeff B, Henderson EE, German J (1995) Somatic intragenic recombination within the mutated locus BLM can correct the high sister-chromatid exchange phenotype of Bloom syndrome cells. Am J Hum Genet 57(5):1019–1027

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4(3):203–221.

    CAS  PubMed  Google Scholar 

  18. Darling TN, Yee C, Bauer JW, Hintner H, Yancey KB (1999) Revertant mosaicism: partial correction of a germ-line mutation in COL17A1 by a frame-restoring mutation. J Clin Investig 103(10):1371–1377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jonkman MF, Pasmooij AM (2009) Revertant mosaicism–patchwork in the skin. N Engl J Med 360(16):1680–1682

    Article  CAS  PubMed  Google Scholar 

  20. Pasmooij AM, Garcia M, Escamez MJ, Nijenhuis AM, Azon A, Cuadrado-Corrales N, Jonkman MF, Del Rio M (2010) Revertant mosaicism due to a second-site mutation in COL7A1 in a patient with recessive dystrophic epidermolysis bullosa. J Investig Dermatol 130(10):2407–2411.

    Article  CAS  PubMed  Google Scholar 

  21. Choate KA, Lu Y, Zhou J, Choi M, Elias PM, Farhi A, Nelson-Williams C, Crumrine D, Williams ML, Nopper AJ, Bree A, Milstone LM, Lifton RP (2010) Mitotic recombination in patients with ichthyosis causes reversion of dominant mutations in KRT10. Science 330(6000):94–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Choate KA, Lu Y, Zhou J, Elias PM, Zaidi S, Paller AS, Farhi A, Nelson-Williams C, Crumrine D, Milstone LM, Lifton RP (2015) Frequent somatic reversion of KRT1 mutations in ichthyosis with confetti. J Clin Investig 125(4):1703–1707.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lim YH, Qiu J, Saraceni C, Burrall BA, Choate KA (2016) Genetic reversion via mitotic recombination in Ichthyosis with Confetti due to a KRT10 polyalanine frameshift mutation. J Investig Dermatol 136(8):1725–1728.

    Article  CAS  PubMed  Google Scholar 

  24. Boztug K, Germeshausen M, Avedillo Diez I, Gulacsy V, Diestelhorst J, Ballmaier M, Welte K, Marodi L, Chernyshova L, Klein C (2008) Multiple independent second-site mutations in two siblings with somatic mosaicism for Wiskott–Aldrich syndrome. Clin Genet 74(1):68–74.

    Article  CAS  PubMed  Google Scholar 

  25. Fuchs E, Raghavan S (2002) Getting under the skin of epidermal morphogenesis. Nat Rev Genet 3(3):199–209

    Article  CAS  PubMed  Google Scholar 

  26. Blanpain C, Fuchs E (2006) Epidermal stem cells of the skin. Annu Rev Cell Dev Biol 22:339–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Uitto J, Pulkkinen L (1996) Molecular complexity of the cutaneous basement membrane zone. Mol Biol Rep 23(1):35–46.

    Article  CAS  PubMed  Google Scholar 

  28. Litjens SH, de Pereda JM, Sonnenberg A (2006) Current insights into the formation and breakdown of hemidesmosomes. Trends Cell Biol 16(7):376–383.

    Article  CAS  PubMed  Google Scholar 

  29. Borradori L, Sonnenberg A (1999) Structure and function of hemidesmosomes: more than simple adhesion complexes. J Investig Dermatol 112(4):411–418.

    Article  CAS  PubMed  Google Scholar 

  30. Eckert RL, Rorke EA (1989) Molecular biology of keratinocyte differentiation. Environ Health Perspect 80:109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fuchs E (1993) Epidermal differentiation and keratin gene expression. J Cell Sci Suppl 17:197–208.

    Article  CAS  PubMed  Google Scholar 

  32. Pasmooij AM, Pas HH, Deviaene FC, Nijenhuis M, Jonkman MF (2005) Multiple correcting COL17A1 mutations in patients with revertant mosaicism of epidermolysis bullosa. Am J Hum Genet 77(5):727–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pasmooij AM, Pas HH, Bolling MC, Jonkman MF (2007) Revertant mosaicism in junctional epidermolysis bullosa due to multiple correcting second-site mutations in LAMB3. J Clin Investig 117(5):1240–1248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schuilenga-Hut PH, Scheffer H, Pas HH, Nijenhuis M, Buys CH, Jonkman MF (2002) Partial revertant mosaicism of keratin 14 in a patient with recessive epidermolysis bullosa simplex. J Investig Dermatol 118(4):626–630.

    Article  CAS  PubMed  Google Scholar 

  35. El Ghalbzouri A, Jonkman M, Kempenaar J, Ponec M (2003) Recessive epidermolysis bullosa simplex phenotype reproduced in vitro: ablation of keratin 14 is partially compensated by keratin 17. Am J Pathol 163(5):1771–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Smith FJ, Morley SM, McLean WH (2004) Novel mechanism of revertant mosaicism in Dowling-Meara epidermolysis bullosa simplex. J Investig Dermatol;122(1):73–77.

    Article  CAS  PubMed  Google Scholar 

  37. Almaani N, Nagy N, Liu L, Dopping-Hepenstal PJ, Lai-Cheong JE, Clements SE, Techanukul T, Tanaka A, Mellerio JE, McGrath JA (2010) Revertant mosaicism in recessive dystrophic epidermolysis bullosa. J Investig Dermatol;130(7):1937–1940.

    Article  CAS  PubMed  Google Scholar 

  38. Lai-Cheong JE, McGrath JA (2010) Kindler syndrome. Dermatol Clin 28(1):119–124.

    Article  CAS  PubMed  Google Scholar 

  39. Kiritsi D, He Y, Pasmooij AM, Onder M, Happle R, Jonkman MF, Bruckner-Tuderman L, Has C (2012) Revertant mosaicism in a human skin fragility disorder results from slipped mispairing and mitotic recombination. J Clin Investig;122(5):1742–1746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lai-Cheong JE, Moss C, Parsons M, Almaani N, McGrath JA (2012) Revertant mosaicism in Kindler syndrome. J Invest Dermatol 132(3 Pt 1):730–732

    Article  CAS  PubMed  Google Scholar 

  41. Camenzind M, Harms M, Chavaz P, Saurat JH (1984) [Confetti ichthyosis]. Ann Dermatol Venereol 111(8):675–676

    CAS  PubMed  Google Scholar 

  42. Choate KA, Milstone LM (2015) Phenotypic expansion in ichthyosis with confetti. JAMA Dermatol 151(1):15–16.

    Article  PubMed  Google Scholar 

  43. Guerra L, Diociaiuti A, El Hachem M, Castiglia D, Zambruno G (2015) Ichthyosis with confetti: clinics, molecular genetics and management. Orphanet J Rare Dis 10:115.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Spoerri I, Brena M, De Mesmaeker J, Schlipf N, Fischer J, Tadini G, Itin PH, Burger B (2015) The phenotypic and genotypic spectra of ichthyosis with confetti plus novel genetic variation in the 3′ end of KRT10: from disease to a syndrome. JAMA dermatol 151(1):64–69.

    Article  PubMed  Google Scholar 

  45. Hotz A, Oji V, Bourrat E, Jonca N, Mazereeuw-Hautier J, Betz RC, Blume-Peytavi U, Stieler K, Morice-Picard F, Schonbuchner I, Markus S, Schlipf N, Fischer J (2016) Expanding the clinical and genetic spectrum of KRT1, KRT2 and KRT10 mutations in Keratinopathic Ichthyosis. Acta Derm Venereol 96(4):473–478

    Article  CAS  PubMed  Google Scholar 

  46. Suzuki S, Nomura T, Miyauchi T, Takeda M, Nakamura H, Shinkuma S, Fujita Y, Akiyama M, Shimizu H (2016) Revertant mosaicism in ichthyosis with confetti caused by a frameshift mutation in KRT1. J Investig Dermatol;136(10):2093–2095.

    Article  CAS  PubMed  Google Scholar 

  47. Lim YH, Choate KA (2016) Expanding the Mutation Spectrum of Ichthyosis with Confetti. J Investig Dermatol 136(10):1941–1943.

    Article  CAS  PubMed  Google Scholar 

  48. LaFave MC, Sekelsky J (2009) Mitotic recombination: why? when? how? where? PLoS Genet 5(3):e1000411

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cao T, Longley MA, Wang XJ, Roop DR (2001) An inducible mouse model for epidermolysis bullosa simplex: implications for gene therapy. J Cell Biol 152(3):651–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kolahgar G, Suijkerbuijk SJ, Kucinski I, Poirier EZ, Mansour S, Simons BD, Piddini E (2015) Cell competition modifies adult stem cell and tissue population dynamics in a JAK-STAT-dependent manner. Dev Cell 34(3):297–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rothnagel JA, Dominey AM, Dempsey LD, Longley MA, Greenhalgh DA, Gagne TA, Huber M, Frenk E, Hohl D, Roop DR (1992) Mutations in the rod domains of keratins 1 and 10 in epidermolytic hyperkeratosis. Science 257(5073):1128–1130

    Article  CAS  PubMed  Google Scholar 

  52. Arin MJ, Longley MA, Wang XJ, Roop DR (2001) Focal activation of a mutant allele defines the role of stem cells in mosaic skin disorders. J Cell Biol 152(3):645–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Whittock NV, Smith FJ, Wan H, Mallipeddi R, Griffiths WA, Dopping-Hepenstal P, Ashton GH, Eady RA, McLean WH, McGrath JA (2002) Frameshift mutation in the V2 domain of human keratin 1 results in striate palmoplantar keratoderma. J Investig Dermatol 118(5):838–844.

    Article  CAS  PubMed  Google Scholar 

  54. Sprecher E, Yosipovitch G, Bergman R, Ciubutaro D, Indelman M, Pfendner E, Goh LC, Miller CJ, Uitto J, Richard G (2003) Epidermolytic hyperkeratosis and epidermolysis bullosa simplex caused by frameshift mutations altering the v2 tail domains of keratin 1 and keratin 5. J Investig Dermatol 120(4):623–626.

    Article  CAS  PubMed  Google Scholar 

  55. Steinert PM (1993) Structure, function, and dynamics of keratin intermediate filaments. J Investig Dermatol 100(6):729–734.

    Article  CAS  PubMed  Google Scholar 

  56. Korge BP, Gan SQ, McBride OW, Mischke D, Steinert PM (1992) Extensive size polymorphism of the human keratin 10 chain resides in the C-terminal V2 subdomain due to variable numbers and sizes of glycine loops. Proc Natl Acad Sci USA 89(3):910–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bhattacherjee V, Mukhopadhyay P, Singh S, Roberts EA, Hackmiller RC, Greene RM, Pisano MM (2004) Laser capture microdissection of fluorescently labeled embryonic cranial neural crest cells. Genesis 39(1):58–64

    Article  CAS  PubMed  Google Scholar 

  58. Hsu YC, Li L, Fuchs E (2014) Emerging interactions between skin stem cells and their niches. Nat Med 20(8):847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rompolas P, Mesa KR, Kawaguchi K, Park S, Gonzalez D, Brown S, Boucher J, Klein AM, Greco V (2016) Spatiotemporal coordination of stem cell commitment during epidermal homeostasis. Science 352(6292):1471–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Badiavas EV, Abedi M, Butmarc J, Falanga V, Quesenberry P (2003) Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol 196(2):245–250.

    Article  CAS  PubMed  Google Scholar 

  61. Wu Y, Zhao RC, Tredget EE (2010) Concise review: bone marrow-derived stem/progenitor cells in cutaneous repair and regeneration. Stem cells 28(5):905–915.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Fujita Y, Abe R, Inokuma D, Sasaki M, Hoshina D, Natsuga K, Nishie W, McMillan JR, Nakamura H, Shimizu T, Akiyama M, Sawamura D, Shimizu H (2010) Bone marrow transplantation restores epidermal basement membrane protein expression and rescues epidermolysis bullosa model mice. Proc Natl Acad Sci USA 107(32):14345–14350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tolar J, Wagner JE (2013) Allogeneic blood and bone marrow cells for the treatment of severe epidermolysis bullosa: repair of the extracellular matrix. Lancet 382(9899):1214–1223

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wagner JE, Ishida-Yamamoto A, McGrath JA, Hordinsky M, Keene DR, Woodley DT, Chen M, Riddle MJ, Osborn MJ, Lund T, Dolan M, Blazar BR, Tolar J (2010) Bone marrow transplantation for recessive dystrophic epidermolysis bullosa. N Engl J Med 363(7):629–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang W, Hanks AN, Boucher K, Florell SR, Allen SM, Alexander A, Brash DE, Grossman D (2005) UVB-induced apoptosis drives clonal expansion during skin tumor development. Carcinogenesis 26(1):249–257

    Article  CAS  PubMed  Google Scholar 

  66. Forsberg LA, Gisselsson D, Dumanski JP (2017) Mosaicism in health and disease—clones picking up speed. Nat Rev Genet 18(2):128–142

    Article  CAS  PubMed  Google Scholar 

  67. Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P, McLaren S, Wedge DC, Fullam A, Alexandrov LB, Tubio JM, Stebbings L, Menzies A, Widaa S, Stratton MR, Jones PH, Campbell PJ (2015) Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348(6237):880–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kubick BJ, Roop DR (2011) A fitness model for melanoma-initiating cells. Pigment Cell Melanoma Res 24(3):396–397.

    Article  PubMed  Google Scholar 

  69. Gostynski A, Pasmooij AM, Jonkman MF (2014) Successful therapeutic transplantation of revertant skin in epidermolysis bullosa. J Am Acad Dermatol 70(1):98–101

    Article  PubMed  Google Scholar 

  70. Gostynski A, Deviaene FC, Pasmooij AM, Pas HH, Jonkman MF (2009) Adhesive stripping to remove epidermis in junctional epidermolysis bullosa for revertant cell therapy. Br J Dermatol 161(2):444–447

    Article  CAS  PubMed  Google Scholar 

  71. Itoh M, Umegaki-Arao N, Guo Z, Liu L, Higgins CA, Christiano AM (2013) Generation of 3D skin equivalents fully reconstituted from human induced pluripotent stem cells (iPSCs). PLoS One 8(10):e77673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Umegaki-Arao N, Pasmooij AM, Itoh M, Cerise JE, Guo Z, Levy B, Gostynski A, Rothman LR, Jonkman MF, Christiano AM (2014) Induced pluripotent stem cells from human revertant keratinocytes for the treatment of epidermolysis bullosa. Sci Transl Med 6(264):264ra164

    Article  PubMed  Google Scholar 

  73. Sebastiano V, Zhen HH, Haddad B, Bashkirova E, Melo SP, Wang P, Leung TL, Siprashvili Z, Tichy A, Li J, Ameen M, Hawkins J, Lee S, Li L, Schwertschkow A, Bauer G, Lisowski L, Kay MA, Kim SK, Lane AT, Wernig M, Oro AE (2014) Human COL7A1-corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. Sci Transl Med 6(264):264ra163

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tolar J, McGrath JA, Xia L, Riddle MJ, Lees CJ, Eide C, Keene DR, Liu L, Osborn MJ, Lund TC, Blazar BR, Wagner JE (2014) Patient-specific naturally gene-reverted induced pluripotent stem cells in recessive dystrophic epidermolysis bullosa. J Investig Dermatol;134(5):1246–1254.

    Article  CAS  PubMed  Google Scholar 

  75. Jongmans MC, Verwiel ET, Heijdra Y, Vulliamy T, Kamping EJ, Hehir-Kwa JY, Bongers EM, Pfundt R, van Emst L, van Leeuwen FN, van Gassen KL, Geurts van Kessel A, Dokal I, Hoogerbrugge N, Ligtenberg MJ, Kuiper RP (2012) Revertant somatic mosaicism by mitotic recombination in dyskeratosis congenita. Am J Hum Genet 90(3):426–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. van den Akker PC, Nijenhuis M, Meijer G, Hofstra RM, Jonkman MF, Pasmooij AM (2012) Natural gene therapy in dystrophic epidermolysis bullosa. Arch Dermatol 148(2):213–216

    Article  PubMed  Google Scholar 

  77. Burger B, Spoerri I, Schubert M, Has C, Itin PH (2012) Description of the natural course and clinical manifestations of ichthyosis with confetti caused by a novel KRT10 mutation. Br J Dermatol 166(2):434–439

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith A. Choate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, Y.H., Fisher, J.M. & Choate, K.A. Revertant mosaicism in genodermatoses. Cell. Mol. Life Sci. 74, 2229–2238 (2017). https://doi.org/10.1007/s00018-017-2468-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2468-2

Keywords

Navigation