Skip to main content
Log in

Cryo-electron microscopy of GDP-tubulin rings

  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Rings of guanosine diphosphate (GDP)-tubulin formed in the presence of divalent cations have been studied using conventional negative stain and cryo-electron microscopy. The structure of such rings resembles that of depolymerizing microtubule ends and corresponds to an “unconstrained” conformation of tubulin in its GDP state. The use of cryo-techniques has allowed us to image the ring polymers free from dehydration and flattening artifacts. Preparations of frozenhydrated GDP-tubulin rings are generally heterogeneous and contain a mixture of double, triple, and incomplete rings, as well as spirals and some rare single rings. Images of different polymer types can be identified and classified into groups that are then amenable for averaging and single particle reconstruction methods. Identifying the differences in tubulin structure, between straight and curve protofilaments, will be important to understand the molecular bases of dynamic instability in microtubules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hyams, J. S. and Lloyd, C. W. (1993)Microtubules. Modern Cell Biology (Harford, J. B. ed.). Wiley-Liss, New York.

    Google Scholar 

  2. Mitchison, T. and Kirschner, M. (1984) Dynamic instability of microtubule growth.Nature 312, 237–242.

    Article  PubMed  CAS  Google Scholar 

  3. Kreis, T. and Vale, R. (1993) Guidebook to the cytoskeleton and motor proteins. Oxford University, New York.

    Google Scholar 

  4. Desai, A. and Mitchison, T. J. (1997) Microtubule polymerization dynamics.Ann. Rev. Dev. Biol. 13, 83–117.

    Article  CAS  Google Scholar 

  5. Spiegelman, B. M., Penningroth, S. M., and Kirschner, M. W. (1977) Turnover of tubulin and the N-site GTP in chinese hamster ovarian cells.Cell 12, 587–600.

    Article  PubMed  CAS  Google Scholar 

  6. Nath, J. P. and Himes, R. H. (1986) Localization of the exchangeable nucleotide binding domain in ß-tubulin.Biochm. Biophys. Res. Com. 135, 1135–1143.

    Article  CAS  Google Scholar 

  7. Jacobs, M., Smith, H. and Taylor, E. W. (1974) Tubulin: nucleotide binding and enzymatic activity.J. Mol. Biol. 89, 455–468.

    Article  PubMed  CAS  Google Scholar 

  8. David-Pfeuty, T., Erickson, H. P., and Pantaloni, D. (1977) Guanosine triphosphate activity of tubulin associated with microtubule assembly.Proc. Natl. Acad. Sci. USA 74, 5372–5376.

    Article  PubMed  CAS  Google Scholar 

  9. Caplow, M., Ruhlen, R. L., and Shanks, J. (1994) The free energy of hydrolysis of a microtubule-bound nucleotide triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice.J. Cell Biol. 127, 779–788.

    Article  PubMed  CAS  Google Scholar 

  10. Mandelkow, E.-M., Mandelkow, E., and Milligan, R. A. (1991) Microtubules dynamics and microtubules caps: a time-resolved cryo-electron microscopy study.J. Cell Biol. 114, 977–991.

    Article  PubMed  CAS  Google Scholar 

  11. Melki, R., Carlier, M. F., Pantaloni, D., and Timasheff, S. N. (1989) Cold depolymerization of microtubules to double rings: geometric stabilization of assemblies.Biochemistry 28, 9143–9152.

    Article  PubMed  CAS  Google Scholar 

  12. Mandelkow, E.-M., Lange, G., Jangla, A., Spann, U., and Mandelkow, E. (1988) Dynamics of the microtubule oscillator: role of nucleotides and tubulin-MAP interactions.EMBO J. 7, 357–365.

    PubMed  CAS  Google Scholar 

  13. Tran, P. T., Joshi, P., and Salmon, E. D. (1997) How tubulin subunits are lost from the shortening ends of microtubules.J. Struct. Biol. 118, 107–118.

    Article  PubMed  CAS  Google Scholar 

  14. Howard, W. D. and Timasheff, S. N. (1986) GDP state of tubulin: stabilization of double rings.Biochemistry 25, 8292–8300.

    Article  PubMed  CAS  Google Scholar 

  15. Voter, W. A. and Erickson, H. P. (1979) Tubulin rings: curved filaments with limited flexibility and two modes of association.J. Supramol. Struc. 10, 419–431.

    Article  CAS  Google Scholar 

  16. Díaz, J. F., Pantos, E., Bordas, J., and Andreu, J. M. (1994) Solution structure of GDP-tubulin double rings to 3nm resolution and comparison with microtubules.J. Mol. Biol. 238, 214–225.

    Article  PubMed  Google Scholar 

  17. Frank, J., Radermacher, M., Penczek, P., Zhu, J., Li, Y. H., Ladjadj, M. et al. (1996) SPIDER and WEB: Processing and visualization of images in 3D microscopy and related fields.J. Struc. Biol. 116, 190–199.

    Article  CAS  Google Scholar 

  18. Crowther, R. A., Henderson, R., and Smith, J. M. (1996) MRC image processing programs.J. Struct. Biol. 116, 9–16.

    Article  PubMed  CAS  Google Scholar 

  19. Lobert, S. and Correia, J. (1992) Subtilisin cleavage of tubulin heterodimers and polymers.Arch. Bioch., Biophys. 296, 152–160.

    Article  CAS  Google Scholar 

  20. White, E. A., Burton, P. R., and Himes, R. H. (1987) Polymorphic assembly of subtilisin-cleaved tubulin.Cell Mot. Cytosk. 7, 31–38.

    Article  CAS  Google Scholar 

  21. Sackett, D. L., Bhattacharyya, B., and Wolff, J. (1985) Tubulin subunit carboxyl termini determine polymerization efficiency.J. Biol. Chem. 260, 43–45.

    PubMed  CAS  Google Scholar 

  22. Nogales, E., Whittaker, M., Milligan, R. A., and Downing, K. H. (1998) High resolution structure of the microtubule.Cell 96, 79–88.

    Article  Google Scholar 

  23. Penczek, P., Radermacher, M., and Frank, J. (1992) Three-dimensional reconstruction of single particles embedded in ice.Ultramicros 40, 33–53.

    Article  CAS  Google Scholar 

  24. Hoenger, A., Sablin, E. P., Vale, R. D., Fletterick, R. J., and Milligan, R. A. (1995) Three-dimensional structure of a tubulin-motor-protein complex.Nature 376, 271–274.

    Article  PubMed  CAS  Google Scholar 

  25. Wolf, S. G., Mosser, G., and Downing, K. H. (1993) Tubulin conformation in zinc-induced sheets and macrotubes.J. Struc. Biol. 111, 190–199.

    Article  CAS  Google Scholar 

  26. Nogales, E., Wolf, S. G., and Downing, K. H. (1998) Structure of the ab tubulin dimer by electron crystallography.Nature 391, 199–203.

    Article  PubMed  CAS  Google Scholar 

  27. Nogales, E., Downing, K. H., Amos, L. A., and Löwe, J. (1998) Tubulin and FtsZ form a distinct family of GTPases.Nature Struc. Biol. 5, 451–458.

    Article  CAS  Google Scholar 

  28. Lobert, S. and Correia, J. J. (1991) Studies of crystallization conditions for native and subtilisin-cleaved pig brain tubulin.Arch. Biochem. Bioph. 290, 93–102.

    Article  CAS  Google Scholar 

  29. Downing, K. H. and Nogales, E. (1998) Tubulin and microtubule structure.Curr. Opin. Cell Biol. 10, 16–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Nogales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicholson, W.V., Lee, M., Downing, K.H. et al. Cryo-electron microscopy of GDP-tubulin rings. Cell Biochem Biophys 31, 175–183 (1999). https://doi.org/10.1007/BF02738171

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02738171

Index Entries

Navigation