Skip to main content

Pressure Cycling Technology in Systems Biology

  • Protocol
  • First Online:
Book cover Microbial Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 881))

Abstract

Systems biologists frequently seek to integrate complex data sets of diverse analytes into a comprehensive picture of an organism’s biological state under defined environmental conditions. Although one would prefer to collect these data from the same sample, technical limitations with traditional sample preparation methods often commit the investigator to extracting one type of analyte at the expense of losing all others. Often, volume further constrains the range of experiments that can be collected from a single sample. The practical solution employed to date has been to rely on information collected from multiple replicate experiments and similar historical or reported data. While this approach has been popular, the integration of information collected from disparate single-analyte sample preparation streams increases uncertainty due to nonalignment during comparative analysis, and such gaps accumulate quickly when combining multiple data sets. Regrettably, discontinuities between separate data streams can confound a whole understanding of the biological system being investigated. This difficulty is further compounded for researchers handling highly pathogenic samples, in which it is often necessary to use harsh chemicals or high-energy sterilization procedures that damage the target analytes. Ultra-high pressure cycling technology (PCT), also known as barocycling, is an emerging sample preparation strategy that has distinct advantages for systems biology studies because it neither commits the researcher to pursuing a specific analyte nor leads to the degradation of target material. In fact, samples prepared under pressure cycling conditions have been shown to yield a more complete set of analytes due to uniform disruption of the sample matrix coupled with an advantageous high pressure solvent environment. Fortunately, PCT safely sterilizes and extracts complex or pathogenic viral, bacterial, and spore samples without adversely affecting the constituent biomolecules valued as informative and meaningful analytes. This chapter provides procedures and findings associated with incorporating PCT into systems biology as a new and enabling approach to preanalytical sample treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BSL:

Biological safety level

cfu:

Colony forming units

FEP:

Fluorinated ethylene propylene

MMIB:

Muscle Mitochondria Isolation Buffer

PBI:

Pressure BioSciences, Inc.

PCT:

Pressure cycling technology, also Barocycling

SPS:

Sample preparation system

TSB:

Tryptone Soy Broth

References

  1. Powell BS, Cybulski R (2011) Inactivation and extraction of bacterial spores for systems biological analysis. In: Ivanov AR, Lazarev A (eds) Sample preparation in biological mass spectrometry. Springer, New York

    Google Scholar 

  2. Banerjee S, Smallwood A, Chambers AE, Nicolaides K (2003) Quantitative recovery of immunoreactive proteins from clinical samples following RNA and DNA isolation. Biotechniques 35:450–452, 454, 456

    Google Scholar 

  3. Hummon AB, Lim SR, Difilippantonio MJ, Ried T (2007) Isolation and solubilization of proteins after TRIzol extraction of RNA and DNA from patient material following prolonged storage. Biotechniques 42:467–470, 472

    Google Scholar 

  4. Nolan RL, Teller JK (2006) Diethylamine extraction of proteins and peptides isolated with a mono-phasic solution of phenol and guanidine isothiocyanate. J Biochem Biophys Methods 68:127–131

    Article  PubMed  CAS  Google Scholar 

  5. Riol H, Jeune B, Moskovic A, Bathum L, Wang E (1999) Optimized lymphocyte protein extraction performed simultaneously with DNA and RNA isolation: application to the study of factors affecting DNA, RNA, and protein recovery from lymphocytes of the oldest individuals. Anal Biochem 275:192–201

    Article  PubMed  CAS  Google Scholar 

  6. Tolosa JM, Schjenken JE, Civiti TD, Clifton VL, Smith R (2007) Column-based method to simultaneously extract DNA, RNA, and proteins from the same sample. Biotechniques 43:799–804

    Article  PubMed  CAS  Google Scholar 

  7. Bradley DW, Hess RA, Tao F, Sciaba-Lentz L, Remaley AT, Laugharn JA Jr, Manak M (2000) Pressure cycling technology: a novel approach to virus inactivation in plasma. Transfusion 40:193–200

    Article  PubMed  CAS  Google Scholar 

  8. Gross V, Carlson G, Kwan AT, Smejkal G, Freeman E, Ivanov AR, Lazarev A (2008) Tissue fractionation by hydrostatic pressure cycling technology: the unified sample preparation technique for systems biology studies. J Biomol Tech 19:189–199

    PubMed  Google Scholar 

  9. Ringham H, Bell RL, Smejkal GB, Behnke J, Witzmann FA (2007) Application of pressure cycling technology to tissue sample preparation for 2-DE. Electrophoresis 28:1022–1024

    Article  PubMed  CAS  Google Scholar 

  10. Smejkal GB, Robinson MH, Lawrence NP, Tao F, Saravis CA, Schumacher RT (2006) Increased protein yields from Escherichia coli using pressure-cycling technology. J Biomol Tech 17:173–175

    PubMed  Google Scholar 

  11. Smejkal GB, Witzmann FA, Ringham H, Small D, Chase SF, Behnke J, Ting E (2007) Sample preparation for two-dimensional gel electrophoresis using pressure cycling technology. Anal Biochem 363:309–311

    Article  PubMed  CAS  Google Scholar 

  12. Chesnick IE, Mason JT, O’Leary TJ, Fowler CB (2010) Elevated pressure improves the rate of formalin penetration while preserving tissue morphology. J Cancer 1:178–183

    Article  PubMed  Google Scholar 

  13. Fowler CB, Chesnick IE, Moore CD, O’Leary TJ, Mason JT (2010) Elevated pressure improves the extraction and identification of proteins recovered from formalin-fixed, paraffin-embedded tissue surrogates. PLoS One 5:e14253

    Article  PubMed  Google Scholar 

  14. Fowler CB, Cunningham RE, Waybright TJ, Blonder J, Veenstra TD, O’Leary TJ, Mason JT (2008) Elevated hydrostatic pressure promotes protein recovery from formalin-fixed, paraffin-embedded tissue surrogates. Lab Invest 88:185–195

    Article  PubMed  CAS  Google Scholar 

  15. Smejkal GB, Poinar GO, Righetti PG (2009) Will amber inclusions provide the first glimpse of a Mesozoic proteome? Expert Rev Proteomics 6:1–4

    Article  PubMed  Google Scholar 

  16. Okubara PA, Li C, Schroeder KL, Schumacher RT, Lawrence NP (2007) Improved extraction of Rhizoctonia and Pythium DNA from wheat roots and soil samples using pressure cycling technology. Can J Plant Pathol 29:304–310

    Article  CAS  Google Scholar 

  17. Tao F, Behnke J, Li C, Schumacher R, Lawrence NP (2006) Applications of pressure cycling technology (PCT) in proteomics. In: Smejkal GB, Lazarev A (eds) Separation methods in proteomics. CRC Taylor & Francis, Boca Raton, pp 3–18

    Google Scholar 

  18. Gross VS, Greenberg HK, Baranov SV, Carlson G, Stavrovskaya IG, Lazarev AV, Kristal BS (2011) Isolation of functional mitochondria from rat kidney and skeletal muscle without manual homogenization. Anal Biochem 418(2):213–223

    Article  PubMed  Google Scholar 

  19. Fourme R, Kahn R, Mezouar M, Girard E, Hoerentrup C, Prange T, Ascone I (2001) High-pressure protein crystallography (HPPX): instrumentation, methodology and results on lysozyme crystals. J Synchrotron Radiat 8:1149–1156

    Article  PubMed  CAS  Google Scholar 

  20. Visuri K, Kaipainen E, Kivimaki J, Niemi H, Leisola M, Palosaari S (1990) A new method for protein crystallization using high pressure. Biotechnology (N Y) 8:547–549

    Article  CAS  Google Scholar 

  21. Hess RA, Reinhard LA (1999) Unusual properties of highly charged buffers: large ionization volumes and low barrier hydrogen bonds. JACS 121:9867–9870

    Article  CAS  Google Scholar 

  22. Laugharn JA Jr, Tao F, Sciaba-Lentz L, Bradley DW, Hess RA (1998) Sample preparation for molecular diagnostics by pressure cycling. In: Ludwig H (ed) High pressure bioscience & biotechnology. Springer, New York

    Google Scholar 

  23. Dreier GH, Tao F, Hess RA, Cheung CY, Sciaba LE, Green DJ, Laugharn JA Jr (1999) A bioseparation apparatus with high-pressure fluid injection and fluid sampling. Anal Biochem 269:223–229

    Article  PubMed  CAS  Google Scholar 

  24. Cheung CY, Green DJ, Litt GJ, Laugharn JA Jr (1998) High-pressure-mediated dissociation of immune complexes demonstrated in model systems. Clin Chem 44:299–303

    PubMed  CAS  Google Scholar 

  25. Dusing S, Li C, Behnke J, Manak M, Schumacher R (2001) Inactivation of viruses in plasma by cycled pulses of high pressure. In: Hayashi R (ed) Trends in high pressure bioscience and biotechnology. Elsevier Science B.V., Amsterdam, pp 355–359

    Google Scholar 

  26. Green DJ, Litt GJ, Laugharn JA Jr (1998) Use of high pressure to accelerate antibody: antigen binding kinetics demonstrated in an HIV-1 p24: anti-HIV-1 p24 assay. Clin Chem 44:341–342

    PubMed  CAS  Google Scholar 

  27. Laugharn J, Dreier G, Rudd E, Green D (2000) Pressure cycling reactor and methods of controlling reactions using pressure. BBI BioSeq, Inc., US Patent 6,036,923

    Google Scholar 

  28. Laugharn JA Jr, Hess RA, Tao F (2000) Nucleic acid isolation and purification. BBI BioSeq, Inc., US Patent 6,111,096

    Google Scholar 

  29. Laugharn JA Jr, Hess RA, Tao F (2000) Pressure-enhanced extraction and purification. BBI BioSeq, Inc., US Patent 6,120,985 and 6,274,726

    Google Scholar 

  30. Remaley A, Hess R, Fischer S, Sampson M, Manak M (2000) Pre-analytical sterilization of serum by pressure cycling treatment: a novel procedure to prevent laboratory acquired infections. Clin Chem 46:A39

    Google Scholar 

  31. Rudd EA (1997) Reversible inhibition of lambda exonuclease with high pressure. Biochem Biophys Res Commun 230:140–142

    Article  PubMed  CAS  Google Scholar 

  32. Balasubramanian S, Balasubramaniam VM (2003) Compression heating influence of pressure transmitting fluids on bacteria inactivating during high pressure processing. Food Res Int 36:661–668

    Article  Google Scholar 

  33. Rasanayagam V et al (2003) Compression heating of selected fatty food materials during high-pressure processing. J Food Sci 68:254

    Article  CAS  Google Scholar 

  34. Fatima S, Mishra A, Sen P, Khan RH (2008) Characterization of fluoroalcohols-induced intermediates of Mucor miehei lipase at low pH. Protein Pept Lett 15:346–352

    Article  PubMed  CAS  Google Scholar 

  35. Gross V, Lazarev A, Lawrence N, Schumacher R (2008) Isolation of mitochondria from cell cultures by PCT for proteomic analysis. Biotechniques 45:99–100

    Article  PubMed  CAS  Google Scholar 

  36. Yao H, Stuart RA, Cai S, Sem DS (2008) Structural characterization of the transmembrane domain from subunit e of yeast F1Fo-ATP synthase: a helical GXXXG motif located just under the micelle surface. Biochemistry 47:1910–1917

    Article  PubMed  CAS  Google Scholar 

  37. Chicon R, Belloque J, Recio I, Lopez-Fandino R (2006) Influence of high hydrostatic pressure on the proteolysis of beta-lactoglobulin A by trypsin. J Dairy Res 73:121–128

    Article  PubMed  CAS  Google Scholar 

  38. Chicon R, Lopez-Fandino R, Quiros A, Belloque J (2006) Changes in chymotrypsin hydrolysis of beta-lactoglobulin A induced by high hydrostatic pressure. J Agric Food Chem 54:2333–2341

    Article  PubMed  CAS  Google Scholar 

  39. Penas E, Restani P, Ballabio C, Prestamo G, Fiocchi A, Gomez R (2006) Evaluation of the residual antigenicity of dairy whey hydrolysates obtained by combination of enzymatic hydrolysis and high-pressure treatment. J Food Prot 69:1707–1712

    PubMed  CAS  Google Scholar 

  40. Lopez-Ferrer D, Petritis K, Hixson KK, Heibeck TH, Moore RJ, Belov ME, Camp DG II, Smith RD (2008) Application of pressurized solvents for ultrafast trypsin hydrolysis in proteomics: proteomics on the fly. J Proteome Res 7:3276–3281

    Article  PubMed  CAS  Google Scholar 

  41. Freeman E, Margolin E, Ivanov AR (2011) Pressure-assisted lysis of mammalian cell cultures prior to proteomic analysis. In: Ivanov AR, Lazarev A (eds) Sample preparation in biological mass spectrometry. Springer, New York

    Google Scholar 

  42. Getie-Kebtie M, Lazarev A, Eichelberger M, Alterman M (2010) Label-free mass spectrometry-based relative quantification of proteins separated by one-dimensional gel electrophoresis. Anal Biochem 409:202–212

    Article  PubMed  Google Scholar 

  43. Lee B, Lopez-Ferrer D, Kim BC, Na HB, Park YI, Weitz KK, Warner MG, Hyeon T, Lee SW, Smith RD, Kim J (2011) Rapid and efficient protein digestion using trypsin-coated magnetic nanoparticles under pressure cycles. Proteomics 11:309–318

    Article  PubMed  CAS  Google Scholar 

  44. Lopez-Ferrer D, Petritis K, Robinson EW, Hixson KK, Tian Z, Lee JH, Lee SW, Tolic N, Weitz KK, Belov ME, Smith RD, Pasa-Tolic L (2011) Pressurized pepsin digestion in proteomics: an automatable alternative to trypsin for integrated top-down bottom-up proteomics. Mol Cell Proteomics 10:M110.001479

    Article  PubMed  Google Scholar 

  45. Courtney JW, Kostelnik LM, Zeidner NS, Massung RF (2004) Multiplex real-time PCR for detection of Anaplasma phagocytophilum and Borrelia burgdorferi. J Clin Microbiol 42:3164–3168

    Article  PubMed  CAS  Google Scholar 

  46. Black WC IV, Piesman J (1994) Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. Proc Natl Acad Sci U S A 91:10034–10038

    Article  PubMed  CAS  Google Scholar 

  47. Clements RT, Smejkal G, Sodha NR, Ivanov AR, Asara JM, Feng J, Lazarev A, Gautam S, Senthilnathan V, Khabbaz KR, Bianchi C, Sellke FW (2008) Pilot proteomic profile of differentially regulated proteins in right atrial appendage before and after cardiac surgery using cardioplegia and cardiopulmonary bypass. Circulation 118:S24–S31

    Article  PubMed  CAS  Google Scholar 

  48. Tao F, Li C, Smejkal G, Lazarev A, Lawrence NP, Schumacher RT (2007) Pressure cycling technology (PCT) applications in extraction of biomolecules from challenging biological samples. In: Abe F, Suzuki A (eds) Fourth international conference on high-pressure biosciences and biotechnology, J-STAGE, Tsukuba, pp 166–173

    Google Scholar 

  49. Crowder CD, Matthews HE, Schutzer S, Rounds MA, Luft BJ, Nolte O, Campbell SR, Phillipson CA, Li F, Sampath R, Ecker DJ, Eshoo MW (2010) Genotypic variation and mixtures of Lyme Borrelia in Ixodes ticks from North America and Europe. PLoS One 5:e10650

    Article  PubMed  Google Scholar 

  50. Rijpkema SG, Herbes RG, Verbeek-De Kruif N, Schellekens JF (1996) Detection of four species of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected from roe deer (Capreolus capreolus) in The Netherlands. Epidemiol Infect 117:563–566

    Article  PubMed  CAS  Google Scholar 

  51. Canelle L, Bousquet J, Pionneau C, Hardouin J, Choquet-Kastylevsky G, Joubert-Caron R, Caron M (2006) A proteomic approach to investigate potential biomarkers directed against membrane-associated breast cancer proteins. Electrophoresis 27:1609–1616

    Article  PubMed  CAS  Google Scholar 

  52. Deshusses JM, Burgess JA, Scherl A, Wenger Y, Walter N, Converset V, Paesano S, Corthals GL, Hochstrasser DF, Sanchez JC (2003) Exploitation of specific properties of trifluoroethanol for extraction and separation of membrane proteins. Proteomics 3:1418–1424

    Article  PubMed  CAS  Google Scholar 

  53. Redeby T, Emmer A (2005) Membrane protein and peptide sample handling for MS analysis using a structured MALDI target. Anal Bioanal Chem 381:225–232

    Article  PubMed  CAS  Google Scholar 

  54. Redeby T, Roeraade J, Emmer A (2004) Simple fabrication of a structured matrix-assisted laser desorption/ionization target coating for increased sensitivity in mass spectrometric analysis of membrane proteins. Rapid Commun Mass Spectrom 18:1161–1166

    Article  PubMed  CAS  Google Scholar 

  55. Wang H, Qian WJ, Mottaz HM, Clauss TR, Anderson DJ, Moore RJ, Camp DG II, Khan AH, Sforza DM, Pallavicini M, Smith DJ, Smith RD (2005) Development and evaluation of a micro- and nanoscale proteomic sample preparation method. J Proteome Res 4:2397–2403

    Article  PubMed  CAS  Google Scholar 

  56. Zhang H, Lin Q, Ponnusamy S, Kothandaraman N, Lim TK, Zhao C, Kit HS, Arijit B, Rauff M, Hew CL, Chung MC, Joshi SB, Choolani M (2007) Differential recovery of membrane proteins after extraction by aqueous methanol and trifluoroethanol. Proteomics 7:1654–1663

    Article  PubMed  CAS  Google Scholar 

  57. Zuobi-Hasona K, Crowley PJ, Hasona A, Bleiweis AS, Brady LJ (2005) Solubilization of cellular membrane proteins from Streptococcus mutans for two-dimensional gel electrophoresis. Electrophoresis 26:1200–1205

    Article  PubMed  CAS  Google Scholar 

  58. Muetzelburg MV, Hoffmann R (2008) Separation of multiphosphorylated peptide isomers by CZE. Electrophoresis 29:4381–4385

    Article  PubMed  CAS  Google Scholar 

  59. Mitulovic G, Stingl C, Steinmacher I, Hudecz O, Hutchins JR, Peters JM, Mechtler K (2009) Preventing carryover of peptides and proteins in nano LC-MS separations. Anal Chem 81:5955–5960

    Article  PubMed  CAS  Google Scholar 

  60. Apffel A, Chakel JA, Fischer S, Lichtenwalter K, Hancock WS (1997) Analysis of oligonucleotides by HPLC–electrospray ionization mass spectrometry. Anal Chem 69:1320–1325

    Article  PubMed  CAS  Google Scholar 

  61. HFIP technical product information. DuPont Chemical Solutions http://www2.dupont.com/Polymer_Specialties/en_US/assets/downloads/HFIP_Tech_Sheet_jan2012.pdf

  62. Lazarev AV, Gross VS (2008) Extraction and partitioning of molecules. US Patent Application 20080300386, filed on 2 June 2008

    Google Scholar 

  63. Chatterjee C, Gerig JT (2007) Interactions of trifluroethanol with the Trp-cage peptide. Biopolymers 87:115–123

    Article  PubMed  Google Scholar 

  64. Cort JR, Liu Z, Lee GM, Huggins KN, Janes S, Prickett K, Andersen NH (2009) Solution state structures of human pancreatic amylin and pramlintide. Protein Eng Des Sel 22:497–513

    Article  PubMed  CAS  Google Scholar 

  65. Forbes JG, Jin AJ, Ma K, Gutierrez-Cruz G, Tsai WL, Wang K (2005) Titin PEVK segment: charge-driven elasticity of the open and flexible polyampholyte. J Muscle Res Cell Motil 26:291–301

    Article  PubMed  CAS  Google Scholar 

  66. Naseem F, Khan RH (2008) Pea lectin in alkaline conditions: formation of molten globule-like intermediate and its structural and thermal studies under the influence of hexafluoroisopropanol. Protein Pept Lett 15:606–611

    Article  PubMed  CAS  Google Scholar 

  67. Freeman E, Gross V, Romanovsky I, Ivanov AR (2011) Adipose tissue lysis and protein extraction followed by ms-based proteomic profiling reveals constituents of oxidative stress in obesity. In: Ivanov AR, Lazarev A (eds) Sample preparation in biological mass spectrometry. Springer, New York

    Google Scholar 

  68. Rasmussen HN, Andersen AJ, Rasmussen UF (1997) Optimization of preparation of mitochondria from 25-100 mg skeletal muscle. Anal Biochem 252:153–159

    Article  PubMed  CAS  Google Scholar 

  69. Carroll JA, Stewart PE, Rosa P, Elias AF, Garon CF (2003) An enhanced GFP reporter system to monitor gene expression in Borrelia burgdorferi. Microbiology 149:1819–1828

    Article  PubMed  CAS  Google Scholar 

  70. Dang JL, Heroux K, Kearney J, Arasteh A, Gostomski M, Emanuel PA (2001) Bacillus spore inactivation methods affect detection assays. Appl Environ Microbiol 67:3665–3670

    Article  PubMed  CAS  Google Scholar 

  71. Schneider LV, Likhte V, Wright A, Chu F, Cambron E, Baldwin-Burnett A, Krakow J (2012) Recovery and immunoaffinity enrichment of intact membrane proteins from metastatic ovarian cancer tissue. International Journal of Proteomics, August 2012 (in press)

    Google Scholar 

  72. Patel N, Solanki E, Picciani R, Cavett V, Caldwell-Busby JA, Bhattacharya SK (2008) Strategies to recover proteins from ocular tissues for proteomics. Proteomics 8:1055–1070

    Article  PubMed  CAS  Google Scholar 

  73. Tao F (2008) Challenges and current solutions in proteomic sample preparations. In: Mine Y, Miyashita K, Shahidi F (eds) Nutrigenomics and proteomics in health and disease: food factors and gene interactions. Wiley, New York

    Google Scholar 

  74. Yu C, Cohen LH (2004) Tissue sample preparation—not the same old grind. LC GC N Am. 2003;21:1038–1048

    Google Scholar 

  75. Szabo Z, Guttman A, Karger BL (2009) Rapid release of N-linked glycans from glycoproteins by pressure-cycling technology. Anal Chem 82:2588–2593

    Article  Google Scholar 

  76. McCoy J, Hubbell WL (2011) High-pressure EPR reveals conformational equilibria and volumetric properties of spin-labeled proteins. Proc Natl Acad Sci U S A 108:1331–1336

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded in part by a grant from the United States Defense Threat Reduction Agency (TMTI0049_09_RD_T). The spore inactivation and spore proteome specific work was performed under NIAID/MRMC interagency agreement Y1-AI-2663-01 A120 B.9 and OSD SBIR Phase I grant W81XWH-10-C-0175 to Pressure BioSciences, Inc. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Army.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Rozak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Powell, B.S., Lazarev, A.V., Carlson, G., Ivanov, A.R., Rozak, D.A. (2012). Pressure Cycling Technology in Systems Biology. In: Navid, A. (eds) Microbial Systems Biology. Methods in Molecular Biology, vol 881. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-827-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-827-6_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-826-9

  • Online ISBN: 978-1-61779-827-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics