Skip to main content

RIP: RNA Immunoprecipitation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1480))

Abstract

The relevance of RNA-protein interactions in modulating mRNA and noncoding RNA function is increasingly appreciated and several methods have been recently developed to map them. The RNA immunoprecipitation (RIP) is a powerful method to study the physical association between individual proteins and RNA molecules in vivo. The basic principles of RIP are very similar to those of chromatin immunoprecipitation (ChIP), a largely used tool in the epigenetic field, but with some important caveats. The approach is based on the use of a specific antibody raised against the protein of interest to pull down the RNA-binding protein (RBP) and target-RNA complexes. Any RNA that is associated with this protein complex will also be isolated and can be further analyzed by polymerase chain reaction-based methods, hybridization, or sequencing.

Several variants of this technique exist and can be divided into two main classes: native and cross-linked RNA immunoprecipitation. The native RIP allows to reveal the identity of RNAs directly bound by the protein and their abundance in the immunoprecipitated sample, while cross-linked RIP leads to precisely map the direct and indirect binding site of the RBP of interest to the RNA molecule.

In this chapter both the protocols applied to mammalian cells are described taking into account the caveats and considerations required for designing, performing, and interpreting the results of these experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chen M, Manley JL (2009) Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat Rev Mol Cell Biol 10(11):741–754. doi:10.1038/nrm2777

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Blencowe BJ, Ahmad S, Lee LJ (2009) Current-generation high-throughput sequencing: deepening insights into mammalian transcriptomes. Genes Dev 23(12):1379–1386. doi:10.1101/gad.1788009

    Article  CAS  PubMed  Google Scholar 

  3. Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, Borodina T, Soldatov A, Parkhomchuk D, Schmidt D, O’Keeffe S, Haas S, Vingron M, Lehrach H, Yaspo ML (2008) A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321(5891):956–960. doi:10.1126/science.1160342

    Article  CAS  PubMed  Google Scholar 

  4. Peng Z, Cheng Y, Tan BC, Kang L, Tian Z, Zhu Y, Zhang W, Liang Y, Hu X, Tan X, Guo J, Dong Z, Liang Y, Bao L, Wang J (2012) Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome. Nat Biotechnol 30(3):253–260. doi:10.1038/nbt.2122

    Article  CAS  PubMed  Google Scholar 

  5. Licatalosi DD, Darnell RB (2010) RNA processing and its regulation: global insights into biological networks. Nat Rev Genet 11(1):75–87. doi:10.1038/nrg2673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227. doi:10.1038/nature07672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25(18):1915–1927. doi:10.1101/gad.17446611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thomson AM, Rogers JT, Walker CE, Staton JM, Leedman PJ (1999) Optimized RNA gel-shift and UV cross-linking assays for characterization of cytoplasmic RNA-protein interactions. Biotechniques 27(5):1032–1039, 1042

    PubMed  Google Scholar 

  9. McHugh CA, Russell P, Guttman M (2014) Methods for comprehensive experimental identification of RNA-protein interactions. Genome Biol 15(1):203. doi:10.1186/gb4152

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gilbert C, Svejstrup JQ (2006) RNA immunoprecipitation for determining RNA-protein associations in vivo. Curr Protoc Mol Biol Chapter 27:Unit 27 24. doi:10.1002/0471142727.mb2704s75

    Google Scholar 

  11. Selth LA, Gilbert C, Svejstrup JQ (2009) RNA immunoprecipitation to determine RNA-protein associations in vivo. Cold Spring Harb Protoc 2009(6):pdb prot5234. doi:10.1101/pdb.prot5234

    Google Scholar 

  12. Keene JD, Komisarow JM, Friedersdorf MB (2006) RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat Protoc 1(1):302–307. doi:10.1038/nprot.2006.47

    Article  CAS  PubMed  Google Scholar 

  13. Zhao J, Ohsumi TK, Kung JT, Ogawa Y, Grau DJ, Sarma K, Song JJ, Kingston RE, Borowsky M, Lee JT (2010) Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell 40(6):939–953. doi:10.1016/j.molcel.2010.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huelga SC, Vu AQ, Arnold JD, Liang TY, Liu PP, Yan BY, Donohue JP, Shiue L, Hoon S, Brenner S, Ares M Jr, Yeo GW (2012) Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins. Cell Rep 1(2):167–178. doi:10.1016/j.celrep.2012.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323. doi:10.1016/j.cell.2007.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322(5902):750–756. doi:10.1126/science.1163045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106(28):11667–11672. doi:10.1073/pnas.0904715106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hogan DJ, Riordan DP, Gerber AP, Herschlag D, Brown PO (2008) Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol 6(10):e255. doi:10.1371/journal.pbio.0060255

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ule J, Jensen K, Mele A, Darnell RB (2005) CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 37(4):376–386. doi:10.1016/j.ymeth.2005.07.018

    Article  CAS  PubMed  Google Scholar 

  20. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141(1):129–141. doi:10.1016/j.cell.2010.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Niranjanakumari S, Lasda E, Brazas R, Garcia-Blanco MA (2002) Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods 26(2):182–190. doi:10.1016/S1046-2023(02)00021-X

    Article  CAS  PubMed  Google Scholar 

  22. Klockenbusch C, O’Hara JE, Kast J (2012) Advancing formaldehyde cross-linking towards quantitative proteomic applications. Anal Bioanal Chem 404(4):1057–1067. doi:10.1007/s00216-012-6065-9

    Article  CAS  PubMed  Google Scholar 

  23. Mili S, Steitz JA (2004) Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA 10(11):1692–1694. doi:10.1261/rna.7151404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Darnell RB (2010) HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip Rev RNA 1(2):266–286. doi:10.1002/wrna.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Davidovich C, Zheng L, Goodrich KJ, Cech TR (2013) Promiscuous RNA binding by Polycomb repressive complex 2. Nat Struct Mol Biol 20(11):1250–1257. doi:10.1038/nsmb.2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brockdorff N (2013) Noncoding RNA and Polycomb recruitment. RNA 19(4):429–442. doi:10.1261/rna.037598.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, Sirokman K, Surka C, Kadri S, Xing J, Goren A, Lander ES, Plath K, Guttman M (2013) The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341(6147):1237973. doi:10.1126/science.1237973

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, Attardi LD, Regev A, Lander ES, Jacks T, Rinn JL (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142(3):409–419. doi:10.1016/j.cell.2010.06.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jayaseelan S, Doyle F, Tenenbaum SA (2014) Profiling post-transcriptionally networked mRNA subsets using RIP-Chip and RIP-Seq. Methods 67(1):13–19. doi:10.1016/j.ymeth.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  30. Milek M, Wyler E, Landthaler M (2012) Transcriptome-wide analysis of protein-RNA interactions using high-throughput sequencing. Semin Cell Dev Biol 23(2):206–212. doi:10.1016/j.semcdb.2011.12.001

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria R. Matarazzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gagliardi, M., Matarazzo, M.R. (2016). RIP: RNA Immunoprecipitation. In: Lanzuolo, C., Bodega, B. (eds) Polycomb Group Proteins. Methods in Molecular Biology, vol 1480. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6380-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6380-5_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6378-2

  • Online ISBN: 978-1-4939-6380-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics