Skip to main content

Lamina-Associated Polypeptide (LAP)2α and Other LEM Proteins in Cancer Biology

  • Chapter
  • First Online:
Cancer Biology and the Nuclear Envelope

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 773))

Abstract

The LEM proteins comprise a heterogeneous family of chromatin-associated proteins that share the LEM domain, a structural motif mediating interaction with the DNA associated protein, Barrier-to-Autointegration Factor (BAF). Most of the LEM proteins are integral proteins of the inner nuclear membrane and associate with the nuclear lamina, a structural scaffold of lamin intermediate filament proteins at the nuclear periphery, which is involved in nuclear mechanical functions and (hetero-)chromatin organization. A few LEM proteins, such as Lamina-associated polypeptide (LAP)2α and Ankyrin and LEM domain-containing protein (Ankle)1 lack transmembrane domains and localize throughout the nucleoplasm and cytoplasm, respectively. LAP2α has been reported to regulate cell proliferation by affecting the activity of retinoblastoma protein in tissue progenitor cells and numerous studies showed upregulation of LAP2α in cancer. Ankle1 is a nuclease likely involved in DNA damage repair pathways and single nucleotide polymorphisms in the Ankle1 gene have been linked to increased breast and ovarian cancer risk. In this review we describe potential mechanisms of the involvement of LEM proteins, particularly of LAP2α and Ankle1 in tumorigenesis and we provide evidence that LAP2α expression may be a valuable diagnostic and prognostic marker for tumor analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CMV:

Cytomegalovirus

HPV:

Human papilloma virus

INM:

Inner nuclear membrane

ONM:

Outer nuclear membrane

PARP:

Poly(ADP-ribose) polymerase

SNP:

Single nucleotide polymorphism

References

  1. Wilson KL, Dawson SC (2011) Evolution: functional evolution of nuclear structure. J Cell Biol 195(2):171–181. doi:10.1083/jcb.201103171

    PubMed Central  PubMed  CAS  Google Scholar 

  2. Mekhail K, Moazed D (2010) The nuclear envelope in genome organization, expression and stability. Nat Rev Mol Cell Biol 11(5):317–328. doi:10.1038/nrm2894

    PubMed Central  PubMed  CAS  Google Scholar 

  3. Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD (2008) Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 22(7):832–853. doi:10.1101/gad.1652708

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Parnaik VK (2008) Role of nuclear lamins in nuclear organization, cellular signaling, and inherited diseases. Int Rev Cell Mol Biol 266:157–206. doi:10.1016/S1937-6448(07)66004-3

    PubMed  CAS  Google Scholar 

  5. Dahl KN, Ribeiro AJ, Lammerding J (2008) Nuclear shape, mechanics, and mechanotransduction. Circ Res 102(11):1307–1318. doi:10.1161/CIRCRESAHA.108.173989

    PubMed Central  PubMed  CAS  Google Scholar 

  6. Kind J, van Steensel B (2010) Genome-nuclear lamina interactions and gene regulation. Curr Opin Cell Biol 22(3):320–325. doi:10.1016/j.ceb.2010.04.002

    PubMed  CAS  Google Scholar 

  7. Mattout A, Pike BL, Towbin BD, Bank EM, Gonzalez-Sandoval A, Stadler MB, Meister P, Gruenbaum Y, Gasser SM (2011) An EDMD mutation in C. elegans lamin blocks muscle-specific gene relocation and compromises muscle integrity. Curr Biol 21(19):1603–1614. doi:10.1016/j.cub.2011.08.030

    PubMed  CAS  Google Scholar 

  8. Solovei I, Wang AS, Thanisch K, Schmidt CS, Krebs S, Zwerger M, Cohen TV, Devys D, Foisner R, Peichl L, Herrmann H, Blum H, Engelkamp D, Stewart CL, Leonhardt H, Joffe B (2013) LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152(3):584–598. doi:10.1016/j.cell.2013.01.009

    PubMed  CAS  Google Scholar 

  9. Andres V, Gonzalez JM (2009) Role of A-type lamins in signaling, transcription, and chromatin organization. J Cell Biol 187(7):945–957. doi:10.1083/jcb.200904124

    PubMed Central  PubMed  CAS  Google Scholar 

  10. Heessen S, Fornerod M (2007) The inner nuclear envelope as a transcription factor resting place. EMBO Rep 8(10):914–919. doi:10.1038/sj.embor.7401075

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Worman HJ (2012) Nuclear lamins and laminopathies. J Pathol 226(2):316–325. doi:10.1002/path.2999

    PubMed  CAS  Google Scholar 

  12. Korfali N, Wilkie GS, Swanson SK, Srsen V, de las Heras J, Batrakou DG, Malik P, Zuleger N, Kerr AR, Florens L, Schirmer EC (2012) The nuclear envelope proteome differs notably between tissues. Nucleus 3(6):552–564. doi:10.4161/nucl.22257

    PubMed Central  PubMed  Google Scholar 

  13. Schirmer EC, Florens L, Guan T, Yates JR 3rd, Gerace L (2003) Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science 301(5638):1380–1382. doi:10.1126/science.1088176

    PubMed  CAS  Google Scholar 

  14. Brachner A, Foisner R (2011) Evolvement of LEM proteins as chromatin tethers at the nuclear periphery. Biochem Soc Trans 39(6):1735–1741. doi:10.1042/BST20110724

    PubMed  CAS  Google Scholar 

  15. Cai M, Huang Y, Ghirlando R, Wilson KL, Craigie R, Clore GM (2001) Solution structure of the constant region of nuclear envelope protein LAP2 reveals two LEM-domain structures: one binds BAF and the other binds DNA. EMBO J 20(16):4399–4407. doi:10.1093/emboj/20.16.4399

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Shumaker DK, Lee KK, Tanhehco YC, Craigie R, Wilson KL (2001) LAP2 binds to BAF.DNA complexes: requirement for the LEM domain and modulation by variable regions. EMBO J 20(7):1754–1764. doi:10.1093/emboj/20.7.1754

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Lin F, Blake DL, Callebaut I, Skerjanc IS, Holmer L, McBurney MW, Paulin-Levasseur M, Worman HJ (2000) MAN1, an inner nuclear membrane protein that shares the LEM domain with lamina-associated polypeptide 2 and emerin. J Biol Chem 275(7):4840–4847

    PubMed  CAS  Google Scholar 

  18. Cai M, Huang Y, Suh JY, Louis JM, Ghirlando R, Craigie R, Clore GM (2007) Solution NMR structure of the barrier-to-autointegration factor-Emerin complex. J Biol Chem 282(19):14525–14535. doi:10.1074/jbc.M700576200

    PubMed  CAS  Google Scholar 

  19. Wilson KL, Foisner R (2010) Lamin-binding proteins. Cold Spring Harb Perspect Biol 2(4):a000554. doi:10.1101/cshperspect.a000554

    PubMed Central  PubMed  Google Scholar 

  20. Wilson KL, Berk JM (2010) The nuclear envelope at a glance. J Cell Sci 123(Pt 12):1973–1978. doi:10.1242/jcs.019042

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Pan D, Estevez-Salmeron LD, Stroschein SL, Zhu X, He J, Zhou S, Luo K (2005) The integral inner nuclear membrane protein MAN1 physically interacts with the R-Smad proteins to repress signaling by the transforming growth factor-{beta} superfamily of cytokines. J Biol Chem 280(16):15992–16001. doi:10.1074/jbc.M411234200

    PubMed  CAS  Google Scholar 

  22. Lin F, Morrison JM, Wu W, Worman HJ (2005) MAN1, an integral protein of the inner nuclear membrane, binds Smad2 and Smad3 and antagonizes transforming growth factor-beta signaling. Hum Mol Genet 14(3):437–445. doi:10.1093/hmg/ddi040

    PubMed  CAS  Google Scholar 

  23. Markiewicz E, Tilgner K, Barker N, van de Wetering M, Clevers H, Dorobek M, Hausmanowa-Petrusewicz I, Ramaekers FC, Broers JL, Blankesteijn WM, Salpingidou G, Wilson RG, Ellis JA, Hutchison CJ (2006) The inner nuclear membrane protein emerin regulates beta-catenin activity by restricting its accumulation in the nucleus. EMBO J 25(14):3275–3285. doi:10.1038/sj.emboj.7601230

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Dedeic Z, Cetera M, Cohen TV, Holaska JM (2011) Emerin inhibits Lmo7 binding to the Pax3 and MyoD promoters and expression of myoblast proliferation genes. J Cell Sci 124(Pt 10):1691–1702. doi:10.1242/jcs.080259

    PubMed  CAS  Google Scholar 

  25. Holaska JM, Lee KK, Kowalski AK, Wilson KL (2003) Transcriptional repressor germ cell-less (GCL) and barrier to autointegration factor (BAF) compete for binding to emerin in vitro. J Biol Chem 278(9):6969–6975. doi:10.1074/jbc.M208811200M208811200

    PubMed  CAS  Google Scholar 

  26. Nili E, Cojocaru GS, Kalma Y, Ginsberg D, Copeland NG, Gilbert DJ, Jenkins NA, Berger R, Shaklai S, Amariglio N, Brok-Simoni F, Simon AJ, Rechavi G (2001) Nuclear membrane protein LAP2beta mediates transcriptional repression alone and together with its binding partner GCL (germ-cell-less). J Cell Sci 114(Pt 18):3297–3307

    PubMed  CAS  Google Scholar 

  27. Demmerle J, Koch AJ, Holaska JM (2012) The nuclear envelope protein emerin binds directly to histone deacetylase 3 (HDAC3) and activates HDAC3 activity. J Biol Chem 287(26):22080–22088. doi:10.1074/jbc.M111.325308

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Wagner N, Krohne G (2007) LEM-domain proteins: new insights into lamin-interacting proteins. Int Rev Cytol 261:1–46. doi:10.1016/S0074-7696(07)61001-8

    PubMed  CAS  Google Scholar 

  29. Lee KK, Wilson KL (2004) All in the family: evidence for four new LEM-domain proteins Lem2 (NET-25), Lem3, Lem4 and Lem5 in the human genome. Symp Soc Exp Biol 56:329–339

    PubMed  CAS  Google Scholar 

  30. Harris CA, Andryuk PJ, Cline SW, Mathew S, Siekierka JJ, Goldstein G (1995) Structure and mapping of the human thymopoietin (TMPO) gene and relationship of human TMPO beta to rat lamin-associated polypeptide 2. Genomics 28(2):198–205. doi:10.1006/geno.1995.1131

    PubMed  CAS  Google Scholar 

  31. Bradley CM, Jones S, Huang Y, Suzuki Y, Kvaratskhelia M, Hickman AB, Craigie R, Dyda F (2007) Structural basis for dimerization of LAP2alpha, a component of the nuclear lamina. Structure 15(6):643–653. doi:10.1016/j.str.2007.04.007

    PubMed  CAS  Google Scholar 

  32. Snyers L, Vlcek S, Dechat T, Skegro D, Korbei B, Gajewski A, Mayans O, Schofer C, Foisner R (2007) Lamina-associated polypeptide 2-alpha forms homo-trimers via its C terminus, and oligomerization is unaffected by a disease-causing mutation. J Biol Chem 282(9):6308–6315. doi:10.1074/jbc.M605782200

    PubMed  CAS  Google Scholar 

  33. Foisner R, Gerace L (1993) Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell 73(7):1267–1279. doi:10.1016/0092-8674(93)90355-T

    PubMed  CAS  Google Scholar 

  34. Dechat T, Korbei B, Vaughan OA, Vlcek S, Hutchison CJ, Foisner R (2000) Lamina-associated polypeptide 2alpha binds intranuclear A-type lamins. J Cell Sci 113(Pt 19):3473–3484

    PubMed  CAS  Google Scholar 

  35. Naetar N, Korbei B, Kozlov S, Kerenyi MA, Dorner D, Kral R, Gotic I, Fuchs P, Cohen TV, Bittner R, Stewart CL, Foisner R (2008) Loss of nucleoplasmic LAP2alpha-lamin A complexes causes erythroid and epidermal progenitor hyperproliferation. Nat Cell Biol 10(11):1341–1348. doi:10.1038/ncb1793

    PubMed  CAS  Google Scholar 

  36. Dorner D, Vlcek S, Foeger N, Gajewski A, Makolm C, Gotzmann J, Hutchison CJ, Foisner R (2006) Lamina-associated polypeptide 2alpha regulates cell cycle progression and differentiation via the retinoblastoma-E2F pathway. J Cell Biol 173(1):83–93. doi:10.1083/jcb.200511149

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Markiewicz E, Dechat T, Foisner R, Quinlan RA, Hutchison CJ (2002) Lamin A/C binding protein LAP2alpha is required for nuclear anchorage of retinoblastoma protein. Mol Biol Cell 13(12):4401–4413. doi:10.1091/mbc.E02-07-0450

    PubMed Central  PubMed  CAS  Google Scholar 

  38. Grana X, Garriga J, Mayol X (1998) Role of the retinoblastoma protein family, pRB, p107 and p130 in the negative control of cell growth. Oncogene 17(25):3365–3383. doi:10.1038/sj.onc.1202575

    PubMed  Google Scholar 

  39. Poznic M (2009) Retinoblastoma protein: a central processing unit. J Biosci 34(2):305–312

    PubMed  CAS  Google Scholar 

  40. Zhu L (2005) Tumour suppressor retinoblastoma protein Rb: a transcriptional regulator. Eur J Cancer 41(16):2415–2427. doi:10.1016/j.ejca.2005.08.009

    PubMed  CAS  Google Scholar 

  41. Bartek J, Bartkova J, Lukas J (1996) The retinoblastoma protein pathway and the restriction point. Curr Opin Cell Biol 8(6):805–814

    PubMed  CAS  Google Scholar 

  42. Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81(3):323–330

    PubMed  CAS  Google Scholar 

  43. Malumbres M, Barbacid M (2001) To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1(3):222–231. doi:10.1038/35106065

    PubMed  CAS  Google Scholar 

  44. Bracken AP, Ciro M, Cocito A, Helin K (2004) E2F target genes: unraveling the biology. Trends Biochem Sci 29(8):409–417. doi:10.1016/j.tibs.2004.06.006

    PubMed  CAS  Google Scholar 

  45. Wong JV, Dong P, Nevins JR, Mathey-Prevot B, You L (2011) Network calisthenics: control of E2F dynamics in cell cycle entry. Cell Cycle 10(18):3086–3094

    PubMed Central  PubMed  CAS  Google Scholar 

  46. Polager S, Ginsberg D (2008) E2F—at the crossroads of life and death. Trends Cell Biol 18(11):528–535. doi:10.1016/j.tcb.2008.08.003

    PubMed  CAS  Google Scholar 

  47. Carcagno AL, Marazita MC, Ogara MF, Ceruti JM, Sonzogni SV, Scassa ME, Giono LE, Canepa ET (2011) E2F1-mediated upregulation of p19INK4d determines its periodic expression during cell cycle and regulates cellular proliferation. PLoS One 6(7):e21938. doi:10.1371/journal.pone.0021938

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Lammens T, Li J, Leone G, De Veylder L (2009) Atypical E2Fs: new players in the E2F transcription factor family. Trends Cell Biol 19(3):111–118. doi:10.1016/j.tcb.2009.01.002

    PubMed Central  PubMed  CAS  Google Scholar 

  49. Chen HZ, Tsai SY, Leone G (2009) Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer 9(11):785–797. doi:10.1038/nrc2696

    PubMed Central  PubMed  CAS  Google Scholar 

  50. Ozaki T, Saijo M, Murakami K, Enomoto H, Taya Y, Sakiyama S (1994) Complex formation between lamin A and the retinoblastoma gene product: identification of the domain on lamin A required for its interaction. Oncogene 9(9):2649–2653

    PubMed  CAS  Google Scholar 

  51. Johnson BR, Nitta RT, Frock RL, Mounkes L, Barbie DA, Stewart CL, Harlow E, Kennedy BK (2004) A-type lamins regulate retinoblastoma protein function by promoting subnuclear localization and preventing proteasomal degradation. Proc Natl Acad Sci U S A 101(26):9677–9682. doi:10.1073/pnas.0403250101

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Nitta RT, Jameson SA, Kudlow BA, Conlan LA, Kennedy BK (2006) Stabilization of the retinoblastoma protein by A-type nuclear lamins is required for INK4A-mediated cell cycle arrest. Mol Cell Biol 26(14):5360–5372. doi:10.1128/MCB.02464-05

    PubMed Central  PubMed  CAS  Google Scholar 

  53. Van Berlo JH, Voncken JW, Kubben N, Broers JL, Duisters R, van Leeuwen RE, Crijns HJ, Ramaekers FC, Hutchison CJ, Pinto YM (2005) A-type lamins are essential for TGF-beta1 induced PP2A to dephosphorylate transcription factors. Hum Mol Genet 14(19):2839–2849. doi:10.1093/hmg/ddi316

    PubMed  Google Scholar 

  54. Rodriguez J, Calvo F, Gonzalez JM, Casar B, Andres V, Crespo P (2010) ERK1/2 MAP kinases promote cell cycle entry by rapid, kinase-independent disruption of retinoblastoma-lamin A complexes. J Cell Biol 191(5):967–979. doi:10.1083/jcb.201004067

    PubMed Central  PubMed  CAS  Google Scholar 

  55. Lee DC, Welton KL, Smith ED, Kennedy BK (2009) A-type nuclear lamins act as transcriptional repressors when targeted to promoters. Exp Cell Res 315(6):996–1007. doi:10.1016/j.yexcr.2009.01.003

    PubMed Central  PubMed  CAS  Google Scholar 

  56. Dechat T, Gajewski A, Korbei B, Gerlich D, Daigle N, Haraguchi T, Furukawa K, Ellenberg J, Foisner R (2004) LAP2alpha and BAF transiently localize to telomeres and specific regions on chromatin during nuclear assembly. J Cell Sci 117(Pt 25):6117–6128. doi:10.1242/jcs.01529

    PubMed  CAS  Google Scholar 

  57. Moir RD, Yoon M, Khuon S, Goldman RD (2000) Nuclear lamins A and B1: different pathways of assembly during nuclear envelope formation in living cells. J Cell Biol 151(6):1155–1168

    PubMed Central  PubMed  CAS  Google Scholar 

  58. Pekovic V, Harborth J, Broers JL, Ramaekers FC, van Engelen B, Lammens M, von Zglinicki T, Foisner R, Hutchison C, Markiewicz E (2007) Nucleoplasmic LAP2alpha-lamin A complexes are required to maintain a proliferative state in human fibroblasts. J Cell Biol 176(2):163–172. doi:10.1083/jcb.200606139

    PubMed Central  PubMed  CAS  Google Scholar 

  59. Gotic I, Schmidt WM, Biadasiewicz K, Leschnik M, Spilka R, Braun J, Stewart CL, Foisner R (2010) Loss of LAP2 alpha delays satellite cell differentiation and affects postnatal fiber-type determination. Stem Cells 28(3):480–488. doi:10.1002/stem.292

    PubMed  CAS  Google Scholar 

  60. Markiewicz E, Ledran M, Hutchison CJ (2005) Remodelling of the nuclear lamina and nucleoskeleton is required for skeletal muscle differentiation in vitro. J Cell Sci 118(Pt 2):409–420. doi:10.1242/jcs.01630

    PubMed  CAS  Google Scholar 

  61. Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt MM, Brown PO, Botstein D (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13(6):1977–2000. doi:10.1091/mbc.02-02-0030

    PubMed Central  PubMed  CAS  Google Scholar 

  62. Dong HM, Xu CS (2008) Analysis of the relevance of e2fs and their target genes with rat liver regeneration. Indian J Gastroenterol 27(1):31–32

    PubMed  Google Scholar 

  63. Melcon G, Kozlov S, Cutler DA, Sullivan T, Hernandez L, Zhao P, Mitchell S, Nader G, Bakay M, Rottman JN, Hoffman EP, Stewart CL (2006) Loss of emerin at the nuclear envelope disrupts the Rb1/E2F and MyoD pathways during muscle regeneration. Hum Mol Genet 15(4):637–651. doi:10.1093/hmg/ddi479

    PubMed  CAS  Google Scholar 

  64. Bakay M, Wang Z, Melcon G, Schiltz L, Xuan J, Zhao P, Sartorelli V, Seo J, Pegoraro E, Angelini C, Shneiderman B, Escolar D, Chen YW, Winokur ST, Pachman LM, Fan C, Mandler R, Nevo Y, Gordon E, Zhu Y, Dong Y, Wang Y, Hoffman EP (2006) Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb-MyoD pathways in muscle regeneration. Brain 129(Pt 4):996–1013. doi:10.1093/brain/awl023

    PubMed  Google Scholar 

  65. Li Z, Van Calcar S, Qu C, Cavenee WK, Zhang MQ, Ren B (2003) A global transcriptional regulatory role for c-Myc in Burkitt’s lymphoma cells. Proc Natl Acad Sci U S A 100(14):8164–8169. doi:10.1073/pnas.1332764100

    PubMed Central  PubMed  CAS  Google Scholar 

  66. Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA, Dynlacht BD (2002) E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev 16(2):245–256. doi:10.1101/gad.949802

    PubMed Central  PubMed  CAS  Google Scholar 

  67. Asp P, Acosta-Alvear D, Tsikitis M, van Oevelen C, Dynlacht BD (2009) E2f3b plays an essential role in myogenic differentiation through isoform-specific gene regulation. Genes Dev 23(1):37–53. doi:10.1101/gad.1727309

    PubMed Central  PubMed  CAS  Google Scholar 

  68. Westendorp B, Mokry M, Groot Koerkamp MJ, Holstege FC, Cuppen E, de Bruin A (2012) E2F7 represses a network of oscillating cell cycle genes to control S-phase progression. Nucleic Acids Res 40(8):3511–3523. doi:10.1093/nar/gkr1203

    PubMed Central  PubMed  CAS  Google Scholar 

  69. Zhou W, Yang Y, Xia J, Wang H, Salama ME, Xiong W, Xu H, Shetty S, Chen T, Zeng Z, Shi L, Zangari M, Miles R, Bearss D, Tricot G, Zhan F (2013) NEK2 induces drug resistance mainly through activation of efflux drug pumps and is associated with poor prognosis in myeloma and other cancers. Cancer Cell 23(1):48–62. doi:10.1016/j.ccr.2012.12.001

    PubMed Central  PubMed  CAS  Google Scholar 

  70. Shi T, Mazumdar T, Devecchio J, Duan ZH, Agyeman A, Aziz M, Houghton JA (2010) cDNA microarray gene expression profiling of hedgehog signaling pathway inhibition in human colon cancer cells. PLoS One 5(10). doi:10.1371/journal.pone.0013054

  71. Viatour P, Ehmer U, Saddic LA, Dorrell C, Andersen JB, Lin C, Zmoos AF, Mazur PK, Schaffer BE, Ostermeier A, Vogel H, Sylvester KG, Thorgeirsson SS, Grompe M, Sage J (2011) Notch signaling inhibits hepatocellular carcinoma following inactivation of the RB pathway. J Exp Med 208(10):1963–1976. doi:10.1084/jem.20110198

    PubMed Central  PubMed  CAS  Google Scholar 

  72. Moudgil VK, Dinda S, Khattree N, Jhanwar S, Alban P, Hurd C (2001) Hormonal regulation of tumor suppressor proteins in breast cancer cells. J Steroid Biochem Mol Biol 76(1–5):105–117

    PubMed  CAS  Google Scholar 

  73. Buterin T, Koch C, Naegeli H (2006) Convergent transcriptional profiles induced by endogenous estrogen and distinct xenoestrogens in breast cancer cells. Carcinogenesis 27(8):1567–1578. doi:10.1093/carcin/bgi339

    PubMed  CAS  Google Scholar 

  74. Muchir A, van Engelen BG, Lammens M, Mislow JM, McNally E, Schwartz K, Bonne G (2003) Nuclear envelope alterations in fibroblasts from LGMD1B patients carrying nonsense Y259X heterozygous or homozygous mutation in lamin A/C gene. Exp Cell Res 291(2):352–362

    PubMed  CAS  Google Scholar 

  75. Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE, Gordon LB, Gruenbaum Y, Khuon S, Mendez M, Varga R, Collins FS (2004) Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 101(24):8963–8968. doi:10.1073/pnas.0402943101

    PubMed Central  PubMed  CAS  Google Scholar 

  76. Hernandez L, Roux KJ, Wong ES, Mounkes LC, Mutalif R, Navasankari R, Rai B, Cool S, Jeong JW, Wang H, Lee HS, Kozlov S, Grunert M, Keeble T, Jones CM, Meta MD, Young SG, Daar IO, Burke B, Perantoni AO, Stewart CL (2010) Functional coupling between the extracellular matrix and nuclear lamina by Wnt signaling in progeria. Dev Cell 19(3):413–425. doi:10.1016/j.devcel.2010.08.013

    PubMed Central  PubMed  CAS  Google Scholar 

  77. Song YJ, Stinski MF (2002) Effect of the human cytomegalovirus IE86 protein on expression of E2F-responsive genes: a DNA microarray analysis. Proc Natl Acad Sci U S A 99(5):2836–2841. doi:10.1073/pnas.052010099

    PubMed Central  PubMed  CAS  Google Scholar 

  78. Ward MC, van der Watt PJ, Tzoneva G, Leaner VD (2011) Deregulated LAP2alpha expression in cervical cancer associates with aberrant E2F and p53 activities. IUBMB Life 63(11):1018–1026. doi:10.1002/iub.528

    PubMed  CAS  Google Scholar 

  79. Munger K, Scheffner M, Huibregtse JM, Howley PM (1992) Interactions of HPV E6 and E7 oncoproteins with tumour suppressor gene products. Cancer Surv 12:197–217

    PubMed  CAS  Google Scholar 

  80. Vernell R, Helin K, Muller H (2003) Identification of target genes of the p16INK4A-pRB-E2F pathway. J Biol Chem 278(46):46124–46137. doi:10.1074/jbc.M304930200

    PubMed  CAS  Google Scholar 

  81. Gentles AJ, Alizadeh AA, Lee SI, Myklebust JH, Shachaf CM, Shahbaba B, Levy R, Koller D, Plevritis SK (2009) A pluripotency signature predicts histologic transformation and influences survival in follicular lymphoma patients. Blood 114(15):3158–3166. doi:10.1182/blood-2009-02-202465

    PubMed Central  PubMed  CAS  Google Scholar 

  82. Agnelli L, Forcato M, Ferrari F, Tuana G, Todoerti K, Walker BA, Morgan GJ, Lombardi L, Bicciato S, Neri A (2011) The reconstruction of transcriptional networks reveals critical genes with implications for clinical outcome of multiple myeloma. Clin Cancer Res 17(23):7402–7412. doi:10.1158/1078-0432.CCR-11-0596

    PubMed  CAS  Google Scholar 

  83. Crabbe L, Cesare AJ, Kasuboski JM, Fitzpatrick JA, Karlseder J (2012) Human telomeres are tethered to the nuclear envelope during postmitotic nuclear assembly. Cell Rep 2(6):1521–1529. doi:10.1016/j.celrep.2012.11.019

    PubMed Central  PubMed  CAS  Google Scholar 

  84. Verdun RE, Crabbe L, Haggblom C, Karlseder J (2005) Functional human telomeres are recognized as DNA damage in G2 of the cell cycle. Mol Cell 20(4):551–561. doi:10.1016/j.molcel.2005.09.024

    PubMed  CAS  Google Scholar 

  85. Redwood AB, Perkins SM, Vanderwaal RP, Feng Z, Biehl KJ, Gonzalez-Suarez I, Morgado-Palacin L, Shi W, Sage J, Roti-Roti JL, Stewart CL, Zhang J, Gonzalo S (2011) A dual role for A-type lamins in DNA double-strand break repair. Cell Cycle 10(15):2549–2560

    PubMed Central  PubMed  CAS  Google Scholar 

  86. Gonzalez-Suarez I, Redwood AB, Perkins SM, Vermolen B, Lichtensztejin D, Grotsky DA, Morgado-Palacin L, Gapud EJ, Sleckman BP, Sullivan T, Sage J, Stewart CL, Mai S, Gonzalo S (2009) Novel roles for A-type lamins in telomere biology and the DNA damage response pathway. EMBO J 28(16):2414–2427. doi:10.1038/emboj.2009.196

    PubMed Central  PubMed  CAS  Google Scholar 

  87. Huang S, Risques RA, Martin GM, Rabinovitch PS, Oshima J (2008) Accelerated telomere shortening and replicative senescence in human fibroblasts overexpressing mutant and wild-type lamin A. Exp Cell Res 314(1):82–91. doi:10.1016/j.yexcr.2007.08.004

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Lachapelle S, Gagne JP, Garand C, Desbiens M, Coulombe Y, Bohr VA, Hendzel MJ, Masson JY, Poirier GG, Lebel M (2011) Proteome-wide identification of WRN-interacting proteins in untreated and nuclease-treated samples. J Proteome Res 10(3):1216–1227. doi:10.1021/pr100990s

    PubMed  CAS  Google Scholar 

  89. Kudlow BA, Kennedy BK, Monnat RJ Jr (2007) Werner and Hutchinson-Gilford progeria syndromes: mechanistic basis of human progeroid diseases. Nat Rev Mol Cell Biol 8(5):394–404. doi:10.1038/nrm2161

    PubMed  CAS  Google Scholar 

  90. Sand-Dejmek J, Adelmant G, Sobhian B, Calkins AS, Marto J, Iglehart DJ, Lazaro JB (2011) Concordant and opposite roles of DNA-PK and the “facilitator of chromatin transcription” (FACT) in DNA repair, apoptosis and necrosis after cisplatin. Mol Cancer 10:74. doi:10.1186/1476-4598-10-74

    PubMed Central  PubMed  CAS  Google Scholar 

  91. Jaco I, Munoz P, Blasco MA (2004) Role of human Ku86 in telomere length maintenance and telomere capping. Cancer Res 64(20):7271–7278. doi:10.1158/0008-5472.CAN-04-1381

    PubMed  CAS  Google Scholar 

  92. Wang Y, Ghosh G, Hendrickson EA (2009) Ku86 represses lethal telomere deletion events in human somatic cells. Proc Natl Acad Sci U S A 106(30):12430–12435. doi:10.1073/pnas.0903362106

    PubMed Central  PubMed  CAS  Google Scholar 

  93. Myung K, Ghosh G, Fattah FJ, Li G, Kim H, Dutia A, Pak E, Smith S, Hendrickson EA (2004) Regulation of telomere length and suppression of genomic instability in human somatic cells by Ku86. Mol Cell Biol 24(11):5050–5059. doi:10.1128/MCB.24.11.5050-5059.2004

    PubMed Central  PubMed  Google Scholar 

  94. Gagne JP, Pic E, Isabelle M, Krietsch J, Ethier C, Paquet E, Kelly I, Boutin M, Moon KM, Foster LJ, Poirier GG (2012) Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress. Nucleic Acids Res 40(16):7788–7805. doi:10.1093/nar/gks486

    PubMed Central  PubMed  CAS  Google Scholar 

  95. Kim HJ, Hwang SH, Han ME, Baek S, Sim HE, Yoon S, Baek SY, Kim BS, Kim JH, Kim SY, Oh SO (2012) LAP2 is widely overexpressed in diverse digestive tract cancers and regulates motility of cancer cells. PLoS One 7(6):e39482. doi:10.1371/journal.pone.0039482

    PubMed Central  PubMed  CAS  Google Scholar 

  96. Somech R, Shaklai S, Geller O, Amariglio N, Simon AJ, Rechavi G, Gal-Yam EN (2005) The nuclear-envelope protein and transcriptional repressor LAP2beta interacts with HDAC3 at the nuclear periphery, and induces histone H4 deacetylation. J Cell Sci 118(Pt 17):4017–4025. doi:10.1242/jcs.02521

    PubMed  CAS  Google Scholar 

  97. Somech R, Gal-Yam EN, Shaklai S, Geller O, Amariglio N, Rechavi G, Simon AJ (2007) Enhanced expression of the nuclear envelope LAP2 transcriptional repressors in normal and malignant activated lymphocytes. Ann Hematol 86(6):393–401. doi:10.1007/s00277-007-0275-9

    PubMed  CAS  Google Scholar 

  98. Yuki D, Lin YM, Fujii Y, Nakamura Y, Furukawa Y (2004) Isolation of LEM domain-containing 1, a novel testis-specific gene expressed in colorectal cancers. Oncol Rep 12(2):275–280

    PubMed  CAS  Google Scholar 

  99. Ghafouri-Fard S, Ousati Ashtiani Z, Sabah Golian B, Hasheminasab SM, Modarressi MH (2010) Expression of two testis-specific genes, SPATA19 and LEMD1, in prostate cancer. Arch Med Res 41(3):195–200. doi:10.1016/j.arcmed.2010.04.003

    PubMed  CAS  Google Scholar 

  100. Matsuyama H, Suzuki HI, Nishimori H, Noguchi M, Yao T, Komatsu N, Mano H, Sugimoto K, Miyazono K (2011) miR-135b mediates NPM-ALK-driven oncogenicity and renders IL-17-producing immunophenotype to anaplastic large cell lymphoma. Blood 118(26):6881–6892. doi:10.1182/blood-2011-05-354654

    PubMed  CAS  Google Scholar 

  101. Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ (2005) Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 5(8):615–625. doi:10.1038/nrc1669

    PubMed  CAS  Google Scholar 

  102. Berliner JL, Fay AM (2007) Risk assessment and genetic counseling for hereditary breast and ovarian cancer: recommendations of the National Society of Genetic Counselors. J Genet Couns 16(3):241–260. doi:10.1007/s10897-007-9090-7

    PubMed  Google Scholar 

  103. Ford D, Easton DF, Stratton M, Narod S, Goldgar D, Devilee P, Bishop DT, Weber B, Lenoir G, Chang-Claude J, Sobol H, Teare MD, Struewing J, Arason A, Scherneck S, Peto J, Rebbeck TR, Tonin P, Neuhausen S, Barkardottir R, Eyfjord J, Lynch H, Ponder BA, Gayther SA, Zelada-Hedman M et al (1998) Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet 62(3):676–689

    PubMed Central  PubMed  CAS  Google Scholar 

  104. Stevens KN, Vachon CM, Lee AM, Slager S, Lesnick T, Olswold C, Fasching PA, Miron P, Eccles D, Carpenter JE, Godwin AK, Ambrosone C, Winqvist R, Brauch H, Schmidt MK, Cox A, Cross SS, Sawyer E, Hartmann A, Beckmann MW, Schulz-Wendtland R, Ekici AB, Tapper WJ, Gerty SM, Durcan L, Graham N, Hein R, Nickels S, Flesch-Janys D, Heinz J, Sinn HP, Konstantopoulou I, Fostira F, Pectasides D, Dimopoulos AM, Fountzilas G, Clarke CL, Balleine R, Olson JE, Fredericksen Z, Diasio RB, Pathak H, Ross E, Weaver J, Rudiger T, Forsti A, Dunnebier T, Ademuyiwa F, Kulkarni S, Pylkas K, Jukkola-Vuorinen A, Ko YD, Van Limbergen E, Janssen H, Peto J, Fletcher O, Giles GG, Baglietto L, Verhoef S, Tomlinson I, Kosma VM, Beesley J, Greco D, Blomqvist C, Irwanto A, Liu J, Blows FM, Dawson SJ, Margolin S, Mannermaa A, Martin NG, Montgomery GW, Lambrechts D, dos Santos Silva I, Severi G, Hamann U, Pharoah P, Easton DF, Chang-Claude J, Yannoukakos D, Nevanlinna H, Wang X, Couch FJ (2011) Common breast cancer susceptibility loci are associated with triple-negative breast cancer. Cancer Res 71(19):6240–6249. doi:10.1158/0008-5472.CAN-11-1266

    PubMed Central  PubMed  CAS  Google Scholar 

  105. Chen F, Chen GK, Millikan RC, John EM, Ambrosone CB, Bernstein L, Zheng W, Hu JJ, Ziegler RG, Deming SL, Bandera EV, Nyante S, Palmer JR, Rebbeck TR, Ingles SA, Press MF, Rodriguez-Gil JL, Chanock SJ, Le Marchand L, Kolonel LN, Henderson BE, Stram DO, Haiman CA (2011) Fine-mapping of breast cancer susceptibility loci characterizes genetic risk in African Americans. Hum Mol Genet 20(22):4491–4503. doi:10.1093/hmg/ddr367

    PubMed Central  PubMed  CAS  Google Scholar 

  106. Zhang B, Beeghly-Fadiel A, Long J, Zheng W (2011) Genetic variants associated with breast-cancer risk: comprehensive research synopsis, meta-analysis, and epidemiological evidence. Lancet Oncol 12(5):477–488. doi:10.1016/S1470-2045(11)70076-6

    PubMed Central  PubMed  CAS  Google Scholar 

  107. Antoniou AC, Wang X, Fredericksen ZS, McGuffog L, Tarrell R, Sinilnikova OM, Healey S, Morrison J, Kartsonaki C, Lesnick T, Ghoussaini M, Barrowdale D, Peock S, Cook M, Oliver C, Frost D, Eccles D, Evans DG, Eeles R, Izatt L, Chu C, Douglas F, Paterson J, Stoppa-Lyonnet D, Houdayer C, Mazoyer S, Giraud S, Lasset C, Remenieras A, Caron O, Hardouin A, Berthet P, Hogervorst FB, Rookus MA, Jager A, van den Ouweland A, Hoogerbrugge N, van der Luijt RB, Meijers-Heijboer H, Gomez Garcia EB, Devilee P, Vreeswijk MP, Lubinski J, Jakubowska A, Gronwald J, Huzarski T, Byrski T, Gorski B, Cybulski C, Spurdle AB, Holland H, Goldgar DE, John EM, Hopper JL, Southey M, Buys SS, Daly MB, Terry MB, Schmutzler RK, Wappenschmidt B, Engel C, Meindl A, Preisler-Adams S, Arnold N, Niederacher D, Sutter C, Domchek SM, Nathanson KL, Rebbeck T, Blum JL, Piedmonte M, Rodriguez GC, Wakeley K, Boggess JF, Basil J, Blank SV, Friedman E, Kaufman B, Laitman Y, Milgrom R, Andrulis IL, Glendon G, Ozcelik H, Kirchhoff T, Vijai J, Gaudet MM, Altshuler D, Guiducci C, Loman N, Harbst K, Rantala J, Ehrencrona H, Gerdes AM, Thomassen M, Sunde L, Peterlongo P, Manoukian S, Bonanni B, Viel A, Radice P, Caldes T, de la Hoya M, Singer CF, Fink-Retter A, Greene MH, Mai PL, Loud JT, Guidugli L, Lindor NM, Hansen TV, Nielsen FC, Blanco I, Lazaro C, Garber J, Ramus SJ, Gayther SA, Phelan C, Narod S, Szabo CI, Benitez J, Osorio A, Nevanlinna H, Heikkinen T, Caligo MA, Beattie MS, Hamann U, Godwin AK, Montagna M, Casella C, Neuhausen SL, Karlan BY, Tung N, Toland AE, Weitzel J, Olopade O, Simard J, Soucy P, Rubinstein WS, Arason A, Rennert G, Martin NG, Montgomery GW, Chang-Claude J, Flesch-Janys D, Brauch H, Severi G, Baglietto L, Cox A, Cross SS, Miron P, Gerty SM, Tapper W, Yannoukakos D, Fountzilas G, Fasching PA, Beckmann MW, Dos Santos Silva I, Peto J, Lambrechts D, Paridaens R, Rudiger T, Forsti A, Winqvist R, Pylkas K, Diasio RB, Lee AM, Eckel-Passow J, Vachon C, Blows F, Driver K, Dunning A, Pharoah PP, Offit K, Pankratz VS, Hakonarson H, Chenevix-Trench G, Easton DF, Couch FJ (2010) A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population. Nat Genet 42(10):885–892. doi:10.1038/ng.669

    Google Scholar 

  108. Bolton KL, Tyrer J, Song H, Ramus SJ, Notaridou M, Jones C, Sher T, Gentry-Maharaj A, Wozniak E, Tsai YY, Weidhaas J, Paik D, Van Den Berg DJ, Stram DO, Pearce CL, Wu AH, Brewster W, Anton-Culver H, Ziogas A, Narod SA, Levine DA, Kaye SB, Brown R, Paul J, Flanagan J, Sieh W, McGuire V, Whittemore AS, Campbell I, Gore ME, Lissowska J, Yang HP, Medrek K, Gronwald J, Lubinski J, Jakubowska A, Le ND, Cook LS, Kelemen LE, Brook-Wilson A, Massuger LF, Kiemeney LA, Aben KK, van Altena AM, Houlston R, Tomlinson I, Palmieri RT, Moorman PG, Schildkraut J, Iversen ES, Phelan C, Vierkant RA, Cunningham JM, Goode EL, Fridley BL, Kruger-Kjaer S, Blaeker J, Hogdall E, Hogdall C, Gross J, Karlan BY, Ness RB, Edwards RP, Odunsi K, Moyisch KB, Baker JA, Modugno F, Heikkinenen T, Butzow R, Nevanlinna H, Leminen A, Bogdanova N, Antonenkova N, Doerk T, Hillemanns P, Durst M, Runnebaum I, Thompson PJ, Carney ME, Goodman MT, Lurie G, Wang-Gohrke S, Hein R, Chang-Claude J, Rossing MA, Cushing-Haugen KL, Doherty J, Chen C, Rafnar T, Besenbacher S, Sulem P, Stefansson K, Birrer MJ, Terry KL, Hernandez D, Cramer DW, Vergote I, Amant F, Lambrechts D, Despierre E, Fasching PA, Beckmann MW, Thiel FC, Ekici AB, Chen X, Johnatty SE, Webb PM, Beesley J, Chanock S, Garcia-Closas M, Sellers T, Easton DF, Berchuck A, Chenevix-Trench G, Pharoah PD, Gayther SA (2010) Common variants at 19p13 are associated with susceptibility to ovarian cancer. Nat Genet 42(10):880–884. doi:10.1038/ng.666

    PubMed Central  PubMed  CAS  Google Scholar 

  109. Brachner A, Braun J, Ghodgaonkar M, Castor D, Zlopasa L, Ehrlich V, Jiricny J, Gotzmann J, Knasmuller S, Foisner R (2012) The endonuclease Ankle1 requires its LEM and GIY-YIG motifs for DNA cleavage in vivo. J Cell Sci 125(Pt 4):1048–1057. doi:10.1242/jcs.098392

    PubMed  CAS  Google Scholar 

  110. Dittrich CM, Kratz K, Sendoel A, Gruenbaum Y, Jiricny J, Hengartner MO (2012) LEM-3—a LEM domain containing nuclease involved in the DNA damage response in C. elegans. PLoS One 7(2):e24555

    PubMed Central  PubMed  CAS  Google Scholar 

  111. Rosty C, Sheffer M, Tsafrir D, Stransky N, Tsafrir I, Peter M, de Cremoux P, de la Rochefordiere A, Salmon R, Dorval T, Thiery JP, Couturier J, Radvanyi F, Domany E, Sastre-Garau X (2005) Identification of a proliferation gene cluster associated with HPV E6/E7 expression level and viral DNA load in invasive cervical carcinoma. Oncogene 24(47):7094–7104. doi:10.1038/sj.onc.1208854

    PubMed  CAS  Google Scholar 

  112. Futschik M (2002) Gene expression profiling of metastatic and nonmetastatic colorectal cancer cell lines. Genome Lett 1:26–34

    CAS  Google Scholar 

  113. Ohuchida K, Mizumoto K, Ishikawa N, Fujii K, Konomi H, Nagai E, Yamaguchi K, Tsuneyoshi M, Tanaka M (2005) The role of S100A6 in pancreatic cancer development and its clinical implication as a diagnostic marker and therapeutic target. Clin Cancer Res 11(21):7785–7793. doi:10.1158/1078-0432.CCR-05-0714

    PubMed  CAS  Google Scholar 

  114. Kang W, Tong JH, Chan AW, Lee TL, Lung RW, Leung PP, So KK, Wu K, Fan D, Yu J, Sung JJ, To KF (2011) Yes-associated protein 1 exhibits oncogenic property in gastric cancer and its nuclear accumulation associates with poor prognosis. Clin Cancer Res 17(8):2130–2139. doi:10.1158/1078-0432.CCR-10-2467

    PubMed  CAS  Google Scholar 

  115. Yokota N, Mainprize TG, Taylor MD, Kohata T, Loreto M, Ueda S, Dura W, Grajkowska W, Kuo JS, Rutka JT (2004) Identification of differentially expressed and developmentally regulated genes in medulloblastoma using suppression subtraction hybridization. Oncogene 23(19):3444–3453. doi:10.1038/sj.onc.1207475

    PubMed  CAS  Google Scholar 

  116. Parise P, Finocchiaro G, Masciadri B, Quarto M, Francois S, Mancuso F, Muller H (2006) Lap2alpha expression is controlled by E2F and deregulated in various human tumors. Cell Cycle 5(12):1331–1341

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Andreas Gajewski and Thomas Dechat, MFPL, Vienna, for generously providing immunofluorescence images shown in Fig. 5. Work in the authors’ laboratory was supported by grants from the Austrian Science Fund (FWF P22569-B09 and P23805-B20) to R.F. and from the “Herzfelder’sche Familienstiftung” to A.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Foisner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brachner, A., Foisner, R. (2014). Lamina-Associated Polypeptide (LAP)2α and Other LEM Proteins in Cancer Biology. In: Schirmer, E., de las Heras, J. (eds) Cancer Biology and the Nuclear Envelope. Advances in Experimental Medicine and Biology, vol 773. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8032-8_7

Download citation

Publish with us

Policies and ethics