RT Journal Article SR Electronic T1 Recruitment of ubiquitin-activating enzyme UBA1 to DNA by poly(ADP-ribose) promotes ATR signalling JF Life Science Alliance JO Life Sci. Alliance FD Life Science Alliance LLC SP e201800096 DO 10.26508/lsa.201800096 VO 1 IS 3 A1 Ramhari Kumbhar A1 Sophie Vidal-Eychenié A1 Dimitrios-Georgios Kontopoulos A1 Marion Larroque A1 Christian Larroque A1 Jihane Basbous A1 Sofia Kossida A1 Cyril Ribeyre A1 Angelos Constantinou YR 2018 UL https://www.life-science-alliance.org/content/1/3/e201800096.abstract AB The DNA damage response (DDR) ensures cellular adaptation to genotoxic insults. In the crowded environment of the nucleus, the assembly of productive DDR complexes requires multiple protein modifications. How the apical E1 ubiquitin activation enzyme UBA1 integrates spatially and temporally in the DDR remains elusive. Using a human cell-free system, we show that poly(ADP-ribose) polymerase 1 promotes the recruitment of UBA1 to DNA. We find that the association of UBA1 with poly(ADP-ribosyl)ated protein–DNA complexes is necessary for the phosphorylation replication protein A and checkpoint kinase 1 by the serine/threonine protein kinase ataxia-telangiectasia and RAD3-related, a prototypal response to DNA damage. UBA1 interacts directly with poly(ADP-ribose) via a solvent-accessible and positively charged patch conserved in the Animalia kingdom but not in Fungi. Thus, ubiquitin activation can anchor to poly(ADP-ribose)-seeded protein assemblies, ensuring the formation of functional ataxia-telangiectasia mutated and RAD3-related-signalling complexes.