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A network of human functional gene interactions from
knockout fitness screens in cancer cells
Eiru Kim1, Merve Dede1,2, Walter F Lenoir1,2 , Gang Wang1, Sanjana Srinivasan1,2, Medina Colic1,2, Traver Hart1,3

Genetic interactions mediate the emergence of phenotype from
genotype. The systematic survey of genetic interactions in yeast
showed that genes operating in the same biological process have
highly correlated genetic interaction profiles, and this observation
has been exploited to infer gene function inmodel organisms. Such
assays of digenic perturbations in human cells are also highly
informative, but are not scalable, even with CRISPR-mediated
methods. As an alternative, we developed an indirect method of
deriving functional interactions. We show that genes having cor-
related knockout fitness profiles across diverse, non-isogenic cell
lines are analogous to genes having correlated genetic interaction
profiles across isogenic query strains and similarly imply shared
biological function. We constructed a network of genes with cor-
related fitness profiles across 276 high-quality CRISPR knockout
screens in cancer cell lines into a “coessentiality network,” with up
to 500-fold enrichment for co-functional gene pairs, enabling
strong inference of gene function and highlighting the modular
organization of the cell.
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Introduction

Genetic interactions govern the translation of genotype to phenotype
at every level, from the function of subcellularmolecularmachines to
the emergence of complex organismal traits. In the budding yeast
Saccharomyces cerevisiae, systematic genetic deletion studies
showed that only ~1,100 of its ~6,000 genes (~20%) were required for
growth under laboratory conditions (Giaever et al, 2002). A systematic
survey of digenic knockouts, however, yielded hundreds of thou-
sands of gene pairs whose double knockout induced a fitness
phenotype significantly more severe (synergistic genetic inter-
actions) or less severe (suppressor interactions) than expected
from each gene’s single mutant fitness (Tong et al, 2001; Costanzo et
al, 2010, 2016), with triple-mutant screens adding yet another layer of
complexity (Kuzmin et al, 2018). When trying to decipher the genetic
contribution to as simple a phenotype as fitness, then, there are

vastly more candidate explanations involving genetic interactions
than monogenic fitness effects. Moreover, the impact of each gene
variant not only depends on the sum of all other genetic variants in
the cell but also is strongly influenced by the cell’s environment
(Hillenmeyer et al, 2008; Bandyopadhyay et al, 2010).

Patterns of genetic interaction are deeply informative. Genetic
interactions frequently occur either within members of the same
pathway or process (“within pathway interactions”) or between
members of parallel pathways (“between pathway interactions”)
(Kelley & Ideker, 2005). When assayed systematically, the result is
that genes that operate in the same biological process tend to
interact genetically with the same sets of other genes in discrete,
related pathways, culminating in highly correlated genetic in-
teraction profiles across a diverse panel of genetic backgrounds or
“query strains.” This observation has been exploited extensively to
infer gene function in model organisms and, on a smaller scale, in
human cells based on similarity of genetic interaction profiles
(Lehner et al, 2006; Horn et al, 2011; Bassik et al, 2013; Kampmann et
al, 2013; Roguev et al, 2013; Costanzo et al, 2016). Therefore, beyond
the specific interactions themselves, a gene’s pattern of fitness
phenotypes across a diverse set of backgrounds can inform our
knowledge of that gene’s function.

Translating these concepts into human cells has proved bi-
ologically and technically challenging. The S. cerevisiae genome has
less than one-third the number of protein-coding genes as
humans, and despite the quantum leap in technology that the
CRISPR/Cas system offers to mammalian forward genetics, yeast
remains far simpler to perturb reliably in the laboratory. Several
groups have applied digenic perturbation technologies, using both
shRNA and CRISPR, to find cancer genotype-specific synthetic le-
thals for drug targeting (Wong et al, 2016; Du et al, 2017; Han et al,
2017; le Sage et al, 2017; Shen et al, 2017; Najm et al, 2018) and to
identify genetic interactions that enhance or suppress phenotypes
related to drug and toxin resistance (Bassik et al, 2013; Roguev et al,
2013; Jost et al, 2017). The current state of the art in CRISPR-mediated
gene perturbation relies on observations from three independent
gRNA targeting each gene, or nine pairwise perturbations for each
gene pair, plus non-targeting or other negative controls. The largest
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such mapping to date puts the scale of the problem in stark terms:
Han et al (2017) use a library of 490,000 gRNA doublets—seven times
larger than a latest generation whole-genome, single-gene
knockout library—to query all pairs of 207 target genes or ~0.01%
of all gene pairs in the human genome (Han et al, 2017).

An additional dimension of the scale problem is that of back-
grounds. Whereas one strain of yeast was systematically assayed in
fixed media and environmental conditions to create a reference
genetic interaction network, no such reference cell exists for
humans. Indeed first-generation whole-genome CRISPR screens in
cancer cell lines demonstrated that one of the features associated
with the hugely increased sensitivity of CRISPR over shRNA (Hart et
al, 2014, 2015) was the ability to resolve tissue- and genetic-driven
differences in gene essentiality and the unexpected variation in
gene essentiality in cell lines with ostensibly similar genetic
backgrounds (Wang et al, 2014; Hart et al, 2015).

Nevertheless, small-scale, targeted genetic interaction screens
in human cells using both shRNA and CRISPR showed that the
architecture of the genetic interaction network holds true across
species. Positive and negative genetic interactions within pathways
and between related biological processes yield a correlation
network with the same properties: genes with similar profiles of
genetic interaction across different backgrounds are often in the
same process or complex, providing a strong basis for inference of
gene function (Horn et al, 2011; Bassik et al, 2013, 2013; Kampmann et
al, 2013, 2014; Roguev et al, 2013). Because digenic perturbation
screens are difficult to scale, we considered whether indirect
methods of determining functional genomic information might be
effective on a large scale. Since then, whole-genome CRISPR
knockout screens have been performed in more than 400 cancer
and immortalized cell lines, with the bulk coming from the Cancer
Dependency Map project using standardized protocols and re-
agents (Aguirre et al, 2016; Meyers et al, 2017; Tsherniak et al, 2017).
We hypothesized that genes having correlated knockout fitness
profiles across diverse cell lines would be analogous genes having
correlated genetic interaction profiles across specified query
backgrounds in the same cells, and would similarly imply shared
biological function. This extends a concept explored by Wang et al
(2017), at a small scale, and more deeply by Pan et al (2018) to
discover protein complexes from correlated fitness profiles. We
constructed a network of genes with correlated essentiality scores
into a “coessentiality network,” from which we identified clusters of
genes with high functional coherence. The network provides
powerful insight into functional genomics, cancer targeting, and the
capabilities and limitations of CRISPR-mediated genetic screening
in human cell lines.

Results and Discussion

We considered CRISPR and shRNA whole-genome screen data from
multiple libraries and laboratories: Avana (Doench et al, 2014;
Meyers et al, 2017), GeCKOv2 (Aguirre et al, 2016), TKO (Hart et al,
2015, 2017a; Steinhart et al, 2017), Sabatini (Wang et al, 2014, 2017),
the Moffat shRNA library (Koh et al, 2012; Marcotte et al, 2012, 2016;
Medrano et al, 2017), and other large data sets (McDonald et al, 2017;

Tsherniak et al, 2017) (Fig 1A and Table S1). From raw read count
data, we used the BAGEL pipeline (described in Hart & Moffat (2016)
and improved here; see the Materials and Methods section) to
generate Bayes factors for each gene in each cell line. We removed
non-targeting and nonhuman gene controls and quantile-
normalized each data set to mitigate screen quality bias, yield-
ing an essentiality score where a positive value indicates a strong
knockout fitness defect, and a negative value generally implies no
phenotype (see theMaterials andMethods section for details). Each
gene, therefore, has an “essentiality profile” of its scores across the
screens in that data set.

For each data set, we ranked gene pairs by correlated essentiality
profiles and measured the enrichment for co-functional pairs (see
the Materials andMethods section). We used the log-likelihood score
(LLS) to describe the significance of enrichment. Gene pairs are
ranked by Pearson correlation, grouped into bins of 1,000 pairs, and
each bin is evaluated for the relative abundance of genes annotated
to be in the same KEGG pathway (“true positives”) versus genes
annotated to be in different pathways (“false positives”). Data from
Meyers et al (2017), where CRISPR knockout screens were conducted
using the Avana library in 342 cancer cell lines, showed the strongest
enrichment for co-functional gene pairs (Fig 1B), likely because of the
relatively high quality of the screens (Fig S1) as well as the lineage
and genetic diversity of the cells being screened. In contrast, screens
from Wang et al (2014), (2017) were equally of high quality but were
performed only in 17 acute myeloid leukemia (AML) cell lines with
correspondingly limited diversity. To further increase the co-
functionality signal, we removed screens with poor performance
and only considered genes that were hits in at least three of the
remaining screens; filtering resulted in an additional twofold en-
richment for co-functional gene pairs (Figs 1B and S1). The filtered
data from Meyers et al (2017) (n = 276 cell lines; 5,387 genes; hereafter
“Avana data”) was used for all subsequent analysis. We selected gene
pairs with a Bonferroni-corrected P-value < 0.05 and combined them
into a network, the Cancer Coessentiality Network, containing 3,327
genes connected by 68,813 edges (Fig 1C). It has been observed that
off-target effects of promiscuous gRNA can influence essentiality
scores (Fortin et al, 2018). We evaluated interactions whether there is
a correlation drop after removing all sgRNAs with 1-bp mismatch
against interactors. We marked all correlation drops as off-target–
suspected interactions (Table S5). The resulting network is highly
modular, with clusters showing strong functional coherence, similar
to the networks directly inferred from correlated yeast genetic in-
teraction profiles (Costanzo et al, 2010, 2016).

Essential genes specific to oncogenic contexts

The data underlying the Cancer Coessentiality Network is derived
from well-characterized cancer cell lines from 30+ lineages, rep-
resenting the major oncogenic mutation profiles common to those
cancers. We expected that many clusters in the network could,
therefore, be associated with specific tissues and cancer-relevant
genotypes. By testing cluster-level essentiality profiles for tissue
specificity (see the Materials and Methods section), we identified
only a small number of clusters that correspond to tissue-specific
cancers (Fig 2A), which in turn contain the characteristic oncogenes.
For example, cluster 14 (Fig 2B) consists of BRAF and related genes
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that are highly specific to BRAF-mutated melanoma cells (P < 10−12;
Fig 2C). The cluster contains other elements of the mitogen-activated
protein kinase (MAPK) pathway (MAP2K1, MAPK1, and DUSP4),
indicating their essentiality in BRAF-mutant cells, supporting efforts
to incorporate ERK inhibitors into combinatorial therapies to
overcome resistance to targeted BRAF treatments (Smalley &
Smalley, 2018). This example highlights the utility of this indirect
approach to identify synthetic lethal interactions: genes co-
essential with oncogenes are synthetic lethals. Beyond the
downstream elements of the MAPK pathway itself, the BRAF/
melanoma cluster also contains the transcription factors (TFs),
melanogenesis-associated transcription factor, the developmental
Sry-related box (Sox) gene SOX10, and mesenchymal marker ZEB2,
indicative of the non-epithelial origin of melanocyte cells and
providing insight into the genetic requirements for tissue differ-
entiation in this lineage.

Similar observations hold for other tissue-specific oncogenes.
Cluster 17, essential in lymphoid cell lines (P < 10−7), contains on-
cogene FLI1 and tissue-specific TFMYB (Fig 2D and E), and cluster 38
is enriched for ovarian cancer cells (P < 10−7) and carries lineage-

specific TF PAX8, previously shown to be essential in these cells
(Cheung et al, 2011) (Fig 2F and G). Cluster 75, essential in colorectal
cancer cells (P < 10−9), contains β-catenin (CTNNB1) and TF partner
TCF7L2 (Fig 2H and I); both are linked to E2 ubiquitin ligase UBE2Z,
which mediates UBA6-specific suppression of epithelial-to-
mesenchymal transition (EMT) (Liu et al, 2017), indicating a functional
linkage with β-catenin signaling. Additional tissue- and oncogene-
driven clusters delineating oncogenic receptor tyrosine kinase
(RTK) and MAP kinase signaling, joint cyclin/cyclin-dependent ki-
nase dependencies, and a set of genes enriched in nuclear lamina
maintenance that are preferentially essential in glioblastoma cells
are shown in Fig S2.

Neuroblastoma cells require MYCN, the neuroblastoma-specific
paralog of the MYC oncogene (Huang & Weiss, 2013), as well as
nervous system developmental TF SOX11 (Potzner et al, 2010) (Fig
2J). Interestingly, MYC is highly essential in virtually all non-
neuroblastoma cell lines, resulting in a relatively uncommon
anti-correlation in MYC and MYCN essentiality profiles (r = −0.49; P <
10−17; Fig 2K). While this negative correlation is driven by mutual
exclusivity in tissues, we also observe anti-correlation between

Figure 1. The coessentiality network.
(A) CRISPR and shRNA screens analyzed for this study.
(B) Measuring functional enrichment. For each data set,
pairwise correlations of knockout/knockdown fitness
profiles were ranked, binned (n = 1,000), and measured
for enrichment for shared KEGG terms. Data from
Meyers et al (2017) (“Avana data”) carry significantly
more functional information than other data sets. (C)
The Cancer Coessentiality Network, derived from Avana
data, contains 3,483 genes connected by 68,813 edges.
Selected modules, derived by an unbiased clustering
algorithm and color-coded, demonstrate the functional
coherence of the network.
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tumor suppressors and their repressors in the same cells. CRISPR
knockout of tumor suppressors in cells carrying wild-type alleles
frequently results in increased growth rate, which manifests as
extreme negative essentiality scores. Melanoma cells with wild-type
TP53 show these extreme negative values, resulting in strong anti-
correlation with TP53 suppressors MDM2 (r = −0.86, P < 10−81), MDM4
(r = −0.61, P < 10−28), and PPM1D (r = −0.72, P < 10−44) (Fig 2L and M).

Although TP53 shows the characteristic extreme negative es-
sentiality score of a tumor suppressor gene in wild-type back-
grounds, surprisingly, it causes a growth defect when knocked out
in three cell lines: HCT1143 breast cancer, PC14 lung cancer, and NB4
AML cells (Fig S3A). All three carry the R248Q oncogenic mutation; in
fact, R248Q is weakly predictive of TP53 essentiality generally, and
strongly predictive when it is the only P53 mutation detected

Figure 2. Cancer-specific features of the network.
(A) Clusters of genes were evaluated for tissue specificity (size of circles) and differential mRNA expression of genes in the cluster (color of circles). (B) Cluster 14 (BRAF cluster);
nodes are genes in cluster and edges reflect the strength of correlation of fitness profile. Dashed lines indicate suspected off-target interactions (see the Materials and
Methods section) (C) Heat map of essentiality profiles of genes in BRAF cluster, ranked by median essentiality score. Gene essentiality in the cluster is associated with PBRAF
mutation (P < 10−23) and sensitivity to BRAF inhibitor PLX-4720 (P < 10−7). (D, E) Network and heat map of MYB-related cluster. (F, G) PAX8-associated cluster. (H, I) B-catenin
cluster. (J) MYCN neuroblastoma cluster is anti-correlated with MYC. (K) MYC and MYCN essentiality is mutually exclusive. (L) MDM2 cluster heat map is associated with TP53
mutation status (P < 10−13) and sensitivity to Nutlin-3a (P < 10−14). (M) MDM2 versus TP53 essentiality. TP53 essentiality scores < −50 indicate tumor suppressor role.
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(Fig S3B). Nor is this the only case where a tumor suppressor in one
background is an essential gene in another: the von Hippel–Landau
tumor suppressor gene VHL shows no phenotype in renal cancer
cells, where the gene is nearly universally deleted, but is essential
specifically in BTFC-909 renal carcinoma cells which lack the char-
acteristic Chr3 copy loss (Sinha et al, 2017). In contrast, VHL shows a
fitness defect when knockout out in most other backgrounds (Fig
S3C). The essentiality profile for VHL is strongly correlated with EGLN1
(commonly called PHD2), an oxygen sensor that hydroxylates hypoxia
response genes HIF1A and HIF2A, marking them for degradation by
the VHL complex in normoxic environments (Berra et al, 2003). EGLN1
essentiality is overrepresented inmelanoma cells (P < 10−4, rank-sum
test; essential in 14 of 22 skin cancer cell lines).

A high-precision functional interaction map of human genes

These examples indicate the breadth and precision of the coes-
sentiality network but represent results from hypothesis-guided
queries. In an effort to learn novel associations from the data, we

tested each cluster for its correlation with cell lineage as well as
correlation with gene expression, mutation, and copy number
amplification of all genes both inside and outside the cluster to
identify underlying molecular genetic drivers of modular, emergent
essentiality. We identified 270 genes in 30 clusters whose essen-
tiality profiles strongly correlated with their own copy number
profiles but not their expression profiles (Fig 3A). As copy number
amplification is a known source of false positives in CRISPR screens,
we labeled these clusters as amplification artifacts. An additional
56 genes in 11 clusters showed significant association with both
copy number and expression. These clusters notably include KRAS
amplifications in pancreatic and colorectal cancer (cluster 276),
ERBB2 amplifications in breast and other cancers (cluster 52), and
CCNE1 overexpression/RB1 mutation (cluster 101), consistent with
well-studied patterns of oncogenesis. All network cluster anno-
tations can be found in the master annotation file (Table S7).

Given the underlying data, it is not surprising that oncogenic sig-
natures are clearly evident in the coessentiality network. However, the
vast majority of the network structure does not appear to be driven by

Figure 3. Beyond cancer: characterization of the coessentiality network.
(A) Number of clusters (top) and total genes in clusters (bottom) showing strong association with annotated protein complexes, biological function, tissue specificity,
amplification-induced CRISPR artifacts, and differential expression of genes. (B–D) Comparing the Avana coessentiality network with other functional (B), protein–protein
(C), and coessentiality networks (D) shows the unique information contained in our network. Each number indicates the number of interactions. (E) For some protein
complexes, coessentiality is a better predictor of co-complex membership than co-expression. (F) The coessentiality network is a powerful predictor of cancer pathways
(Huang et al, 2018) compared with other databases and networks (lower rank is better).
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tissue specificity or mutational signatures. The network contains in-
formation complementary to prior functional (Fig 3B) and physical (Fig
3C) interaction networks, and the network derived from Avana data
exhibits far greater coverage than equivalent networks from the
GeCKOv2 subset of Project Achilles (Aguirre et al, 2016) orWang (Wang et
al, 2017) AML-specific data (Fig 3D). Nevertheless, the remaining network
modules show strong functional coherence (Fig 3A). We also compared
our network with previously published analyses of the same CRISPR
screen data inferring protein complexes (Pan et al, 2018) and genetic
interactions (Rauscher et al, 2017). The coessentiality network sub-
stantially expands on Pan et al (2018) and is largely orthogonal to
Rauscher et al (2017), owing to the fundamentally different approaches
used to generate these networks (Fig S4).

Coessentiality often proves a stronger predictor of complex
membership than coexpression (Fig 3E), and this signature is re-
flected in the network clusters we identified. Indeed, 53 clusters,
comprising 1,422 genes, show enrichment for CORUM-annotated
protein complexes at P-value < 10−6, and fitness profiles have been
used to implicate additional members of protein complexes (Pan et
al, 2018). However, this holds only for genes whose knockout fitness
defects vary across cell lines; coessentiality of core essential genes
is poorly predictive of co-complex membership (Fig S5). All 53
CORUM-annotated clusters, plus an additional 44 clusters con-
taining 413 genes (totaling 97 network modules with 1,835 genes),
show enrichment for GO biological process, cellular component,
KEGG pathway, or Reactome pathway annotations at a similarly
strict threshold. In addition, we evaluated the relative performance
of the coessentiality network by measuring its ability to recover
cancer gene sets using DisGeNET (Huang et al, 2018). The coes-
sentiality network ranks comparably with other large functional
networks (Fig 3F), although starting from a much smaller data set,
suggesting that the coessentiality network explains not only protein
complexes but also cancer pathways, including interactions be-
tween protein complexes and signaling transduction.

Epistatic interactions frequently underlie covariation in fitness
profiles (Phillips, 2008). Cluster 2 is highly enriched for genes involved
in themitochondrial electron transport chain, including 30 of 48 genes
encoding subunits of NADH dehydrogenase complex (ETC Complex I; P
< 10−42) plus additional subunits of all other ETC complexes. The cluster
also contains 49 of 51 subunits of the mitochondrial large ribosomal
subunit (P < 10−87), 23 of 25 members of the small subunit (P < 10−39),
plus 20 mitochondrion-specific tRNA synthases (P < 10−20). This mi-
tochondrial translation machinery is required for the synthesis of
proteins in the ETC complexes. These genes’ inclusion in this cluster,
where their essentiality profiles are correlated with those of the
complexes they support, reflects a fundamental feature of saturating
genetic screens: the essentiality of a given enzyme or biological
process is matched by the essentiality of the cellular components
required for the biogenesis and maintenance of that process.

We observe numerous additional instances of such epistatic in-
teractions that highlight functional relationships. For example, gluta-
thione peroxidase gene GPX4 shows highly variable essentiality across
cell lines (Fig 4A and C). GPX4 is a selenoprotein that contains the
cysteine analog selenocysteine (Sec), the “21st amino acid,” at its active
site. Coessential with GPX4 are all the genes required for conversion of
serine-conjugated tRNASer to selenocysteine-conjugated tRNASec (PSTK,
SEPHS2, and SEPSECS), as well as selenocysteine-specific elongation
factor EEFSEC, which guides Sec-tRNASec to specific UGA codons (Fig 4b)
(Schoenmakers et al, 2016). Cellular dependence on GPX4 was recently
shown to be associated with mesenchymal state (Viswanathan et al,
2017), and our analysis corroborates this observation: we find that GPX4
essentiality is higher in cells expressing mesenchymal marker ZEB1 (P <
10−5; Fig 4D). However, GPX4 sensitivity is more strongly associated with
low expression of GPX2, another member of the glutathione peroxidase
family (Fig 4E), suggesting a candidate synthetic lethal interaction
between GPX2 and GPX4.

Similarly, a pair of genes, ACOX1 and HSD17B4, which encode three
of the four enzymatic steps in peroxisomal fatty acid B-oxidation

Figure 4. GPX4 cluster.
(A, B) Glutathione peroxidase GPX4, a selenoprotein, is
strongly clustered with genes involved in the
selenocysteine conversion pathway (B). (C) Entire GPX4
cluster shows marked differential essentiality in
glioblastoma cell lines. (D, E) Cellular requirement for
GPX4 is associated with ZEB1 expression, as previously
reported, but (E) GPX2 expression is more strongly
predictive.
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(FAO), are found in a cluster with 10 PEX genes involved in peroxisome
biogenesis, maintenance, and membrane transport (Fig 5A and B).
The cluster shows a discrete pattern of essentiality, preferentially in
lung cells (essential in 6/42 lung cancer lines in the Avana data; Fig
5C) but also appearing intermittently in other lineages. Notably, this
cluster is intact in the network generated from Aguirre et al (2016) (Fig
5D), although it arises in pancreatic cells rather than lung cells. The
small number of cell lines showing the PEX phenotype preclude a
robust identification of predictive biomarkers; neither the Avana/
lung cluster nor the GeCKO/pancreatic cluster is significantly as-
sociatedwithmutational or lineage-specific features, anddifferential
gene expression analysis yielded no functionally coherent results.

A network of interactions between biological processes

Although individual clusters show high functional coherence, the
network of connections between clusters offers a unique window into

process-level interactions in human cells. The peroxisomal FAO cluster
is strongly connected to another functionally coherent module con-
taining 12 genes, 10 of which are tightly connected to othermembers of
the cluster (Fig 5A). Those 10 include seven genes whose proteins
reside in the ER, five of which regulate cholesterol biosynthesis via
posttranslational modification of sterol regulator element-binding
proteins (SREBPs). The remaining three genes, DHRS7B, TMEM41A,
and C12orf49, are largely or completely uncharacterized; their
strong association with other genes in this cluster implicates a role
in the SREBPmaturation pathway. Both the peroxisomal FAO cluster
and the SREBP maturation cluster are linked with a module con-
taining RAB18, a RAS-related GTPase involved in Golgi-to-ER ret-
rograde transport, as well as its associated GTPase-activating
proteins (GAP), RAB3GAP1 and RAB3GAP2, and guanine nucleotide
exchange factor (GEF), TBC1D120 (Feldmann et al, 2017).

A similar network of modules describes the regulation of the
mechanistic target of rapamycin (mTOR), in particular, its detection

Figure 5. Peroxisomal beta-oxidation.
(A) A large group of peroxisome-associated genes (orange) is connected by high-correlation edges in the network (blue). This cluster is connected by less-stringent edges
(Benjamini adjusted P-value < 0.01; gray edges) to other clusters containing sterol regulatory genes (green nodes) and the RAB18 GTPase (purple nodes). (B) The PEX cluster
contains 12 genes, including two enzymes involved in fatty acid oxidation and 10 peroxisome biogenesis and maintenance genes. (C, D) The PEX cluster is emergently
essential in a subset of lung cancer cell lines in the Avana data and (D) in a subset of pancreatic cancer cell lines in the GeCKO data.
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of cellular amino acid levels (Fig 6A and B). Fig 6 shows the re-
lationships between a series of network modules describing the
core mTOR pathway and several regulatory modules. The mTOR
cluster includes mTORC1/2 subunits MTOR, MLST8, MAPKAP1, and
RICTOR (mTORC1-specific subunit RAPTOR is never essential and,
therefore, absent from the network); canonical mTORC1/mTORC2
regulatory and signaling components PDPK1, AKT1, and PIK3CB; plus
G-protein subunit GNB2, previously shown to physically interact
with mTOR in response to serum stimulation (Robles-Molina et al,
2014). Canonical inhibition of mTOR by the TSC1/TSC2 hetero-
dimer—the TSC1–TSC2 link is the top-ranked correlation in the
entire data set, with ρ = 0.93 (P < 10−117)—is reflected in the anti-
correlation of fitness profiles connecting the TSC1/2 cluster and the
mTOR cluster.

MTOR response to cellular amino acid levels is modulated by an
alternative pathway that functions at the lysosomal membrane
(Bar-Peled & Sabatini, 2014). We identify a large cluster containing
several genes involved in lysosomal protein and transport, in-
cluding the HOPS complex (Balderhaar & Ungermann, 2013; Jiang et
al, 2014) and the VPS26/29/35 retromer complex (Hierro et al, 2007;
Seaman, 2012). This strongly connected cluster also contains the
Rag GTPases RagA (RRAGA) and RagC (RRAGC) that transmit in-
formation on amino acid abundance to mTORC1 (Bar-Peled &
Sabatini, 2014). The Rag GTPases are in turn activated by the
Ragulator complex (Sancak et al, 2010; Bar-Peled et al, 2012) and
folliculin (FLCN) (Μ et al, 2017), also members of the cluster. The
GATOR-1 complex is a nonessential suppressor of essential Rag
GTPase activity (Bar-Peled et al, 2013) and is, therefore, absent from
our network, but essential suppression of GATOR-1 by GATOR-2
(Bar-Peled et al, 2013; Wei et al, 2014) is reflected by the strong
linkage of the GATOR-2 complex to both the Ragulator and mTOR
complexes.

Within the MTOR meta-cluster, we further identify a complex
containing three regulators of protein phosphatase 2A (LCMT1,
TIPRL, and PTPA), whose strong connectivity to the TSC1/2 complex
may suggest a regulatory role for PP2A in MTOR signaling. PP2A has

previously been posited to be an activator of TSC1/2 upstream of
MTOR (Vereshchagina et al, 2008); the coessentiality network
suggests specific PP2A regulators that may mediate this regulation.

A third example of the process-level interactions in cells
demonstrates the hierarchy of operations required for post-
translational maturation of cell surface receptors. Several clusters
in our network describe the ER-associated glycosylation pathways
(Fig 7A and B), including synthesis of lipid-linked sugars via the
dolichol–phosphate–mannose (DPM) pathway (Ashida et al, 2006;
Maeda & Kinoshita, 2008) and extension via the mannosyl-
transferase family. Glycan chains are transferred to asparagine
residues of target proteins via the N-oligosaccharyltransferase
(OST) complex. Nascent polypeptide chains are glycosylated as they
are cotranslationally translocated into the ER, a process facilitated
by signal sequence receptor dimer SSR1/SSR2, and ER-specific
Hsp90 chaperone HSP90B1 facilitates proper folding. The OST
complex and its functional partners are represented in a single
large complex (Fig 7A). Both DPM and OST are highly connected to
the large complex encoding glycosylphosphatidylinositol (GPI)
anchor synthesis; DPM is required for GPI anchor production
(Watanabe et al, 1998; Kinoshita & Inoue, 2000) before transfer to
target proteins (Fig 7B).

A variety of oncogenic drivers among the cell lines underlying
this network give rise to background-specific dependencies, in-
cluding a variety of mutated and/or amplified RTKs with specific,
and mutually exclusive, essentiality profiles. Insulin-like growth
factor receptor IGF1R is one such RTK, which appears in a cluster
with receptor-specific downstream-signaling proteins insulin-
receptor substrate 1 and 2 (IRS1 and IRS2). IGF1R is a highly
N-glycosylated RTK, and the IGF1R complex is tightly connected to
the OST complex in our network. EGFR, also highly glycosylated
(Kaszuba et al, 2015), appears in its own cluster with signaling
adapter protein SHC1 and is also linked to the OST complex
(Fig 7A) despite being mutually exclusive with IGF1R (Fig S2B).
Interestingly, EGFR is more strongly connected with a separate
complex involved in glycosphingolipid biosynthesis (that is itself

Figure 6. mTORC pathway regulation.
(A) The mTORC1/2 complexes are regulated by the
canonical TSC1/2 pathway, but amino acid sensing is
performed via the Ragulator complex at the lysosome.
(B) Clusters in the coessentiality network represent
components involved in mTORC regulation, and edges
between clusters are consistent with information flow
through the regulatory network (red edges indicate
negative correlation).
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linked to the OST complex). Prior work suggests that membrane
glycolipid composition can strongly influence EGFR autophos-
phorylation and signaling (Coskun et al, 2011). In contrast, fi-
broblast growth factor receptor FGFR1 is absent from this meta-
network but is strongly associated with heparin sulfate bio-
synthesis (Fig S2); HS is a known mediator of FGF receptor–ligand
interaction (Wu et al, 2003).

Conclusions

Systematic genetic interaction screens in yeast revealed that most
genetic interactions occur either within a biological pathway or
between related pathways. We demonstrate that single-gene fit-
ness profiles across screens in genetically diverse human cell lines
are analogous to genetic interaction screens across defined iso-
genic query strains. Importantly, as with model organisms, human
genes with correlated fitness profiles are highly likely to participate
in the same biological process. We take advantage of this fun-
damental architectural feature of genetic networks to create a
functional interaction map of bioprocesses that demonstrates
information flow through a human cell. The network predicts gene
function and provides a view of process-level interactions in hu-
man cells, allowing a level of abstraction beyond the gene-centric
approach frequently used.

The network is derived from the emergent essentiality of defined
biological processes and the genes required to execute them. We
show that this approach significantly expands our knowledge beyond
current networks of comparable design (e.g., STRING, HumanNet).
Although the coessentiality network does not capture a large portion
of protein–protein interactions (Chatr-aryamontri et al, 2017) or
genetic interactions (Horlbeck et al, 2018), it predicts PPI with sen-
sitivity comparable to coexpression networks (Fig S6).

Reconstructing biological processes from coessentiality in-
formation has some limitations. First of all, interactions between
genes that do not affect cell fitness cannot be captured. Second,
interactions between gene pairs that are not perturbed in the cell

line pool cannot be captured. Last, the presence of genetic al-
terations like mutation or copy number amplification can generate
confounding effects. A critical next step will be to understand the
underlying context that drives the emergent essentiality of specific
bioprocesses in specific backgrounds. The health implications of
this question are profound. In cancer, to understand the causal
basis of modular emergent essentiality is to identify matched pairs
of biomarkers (the causal basis) and precision targets (the essential
pathway) for personalized chemotherapeutic treatment. In addi-
tion, lineage-specific essential processes could provide explana-
tory power for germline mutations causing tissue-specific disease
presentation, in cancer as well as other diseases.

Expanding the coverage of the network will require different
screening approaches. Fitness screens in cancer cell lines in rich
media will miss cellular dependencies that are present only under
stress conditions. In yeast (Hillenmeyer et al, 2008) and nematodes
(Ramani et al, 2012), these context-dependent fitness effects comprise
the most of the genes in the genome. Increasing the coverage of the
genetic interaction network beyond the ~3,000 genes whose fit-
ness profiles covary across human cancer cell lines will require
screening in different nutrients and perturbagens, as well as
sampling genetic backgrounds outside common cancer geno-
types. Nevertheless, the indirect approach to identifying genetic
interactions from monogenic perturbation studies is demon-
strably effective and offers a powerful tool for navigating the
network of connections between cellular bioprocesses. The coes-
sentiality network used in this study can be viewed interactively
at https://hartlab.shinyapps.io/pickles/ (Lenoir et al, 2018) and
downloaded at the NDEx project.

Materials and Methods

Construction of coessentiality network

A raw read count file of CRISPR pooled library screens for 342 cell
lines using Avana library (Meyers et al, 2017, Avana project) was

Figure 7. Glycosylation of cell surface receptors.
(A) Pathways involved in protein glycosylation and GPI anchor biosynthesis in the ER. (B) A network of clusters around glycosylation tracks the biogenesis and elongation of
carbohydrate trees (DPM synthase, mannosyltransferases, and glucosyltransferases) to their transfer to target proteins via N-linked glycosylation by the OST complex. Cell
surface glycoproteins EGFR and IGF1R are both strongly linked to the OST complex despite their essentiality being mutually exclusive in cell lines.
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downloaded from the data depository (https://figshare.com/
articles/_/5520160). We only kept protein-coding genes for fur-
ther analysis and updated their names using HGNC (Yates et al,
2017) and CCDS (Farrell et al, 2014) database. We discarded sgRNAs
targeting multiple genes to prevent covariation from same sgRNA
depletion. Raw read counts of each cell lines were analyzed through
updated BAGEL v2 build 109 (https://github.com/hart-lab/bagel).
In comparison with published BAGEL version v0.92 (Hart & Moffat,
2016), this updated version used a linear regression model at the
step of calculating Bayes factor to overcome the dynamic range
issue in the previous version (Fig S7).

First, we split cell lines by their experiment batch number with
plasmid DNA control cell line of each batch. Then, normalized fold
change was calculated for each batch as described by Hart and
Moffat (2016), using default parameters (pseudo-count = 5 and
minimum reads = 0). Essentiality of genes was calculated using gold
standard reference sets of 684 core essential genes and 927 non-
essential genes (Hart et al, 2014) (Hart et al, 2017). Lists of core es-
sential genes and nonessential genes used in this study have been
uploaded on the same repository with BAGEL v2 software. Among 341
cell lines (excluding a control cell line), three cell lines,
ASPC1_PANCREAS, HEC59_ENDOMETRIUM, and U178_CENTRAL_-
NERVOUS_SYSTEM, failed to generate essentiality scores because
fold changes of reference core essential genes and nonessential
genes were indistinguishable. Last, we assembled essentiality
profiles of 338 cell lines into a matrix.

We checked screen quality using “precision-recall” function in
BAGEL software, and we calculated F-measure (BF = 5), which is the
harmonic mean of precision and recall at Bayes factor 5. Then,
among 338 cell lines, 276 cell lines were selected for further study,
by F-measure (>0.85) and the number of essential genes (<2,000), to
prevent noise from marginal quality of screens (Tables S2 and S3
and Fig S1). Essentiality of genes was preprocessed using quantile
normalization within each cell line (Table S4). Then, correlation of
essentiality of two genes was calculated using Pearson correlation
coefficient (PCC) for all possible pairs. To remove false positives
from variation of nonessential genes and copy number artifacts, we
discarded genes essential in less than three cell lines among 276
cell lines and pairs of two genes located within 20M window on the
same chromosome from the network. Finally, high significant re-
lationships were selected by taking positive correlations with
Bonferroni-corrected P-value less than 0.05. The strict-threshold
coessentiality network is composed of 3,483 genes and 68,813
edges. In addition, we investigate interactions biased to off-target
effects. We have tested all pairs whether the correlation of two
genes drops after removing sgRNAs target the other gene allowing
1-bp mismatch. We marked all interactions that dropped below the
threshold. We also constructed an extended coessentiality net-
work including both positive and negative interactions cutoff by
Benjamini–Hochberg adjusted P-value 0.01 (n = 285k positive and
149k negative correlations) (Table S5). All network figures shown in
this article were drawn using Cytoscape (Shannon et al, 2003).

Performance benchmark of coessentiality networks

Performance benchmark of coessentiality network was conducted
by a pathway enrichment test using the KEGG pathway database

(downloaded in 2015). Pathways having >200 annotated genes
(including the ribosome, spliceosome, and proteasome) were
discarded to minimize bias. For each network, gene pairs were
ranked by PCC and binned into groups of 1,000 pairs. The cumu-
lative LLS (Lee et al, 2011) was calculated per each bin as follows:

LLS

= The odds of within pathway interations in sample
The odds of within pathway interactions in total possible pairs

:

To compare performance with other screens, we constructed
coessentiality networks for two other CRISPR data sets (Wang et al,
2015, 2017; Aguirre et al, 2016) and three shRNA data sets (Tsherniak
et al, 2017; Hart et al, 2017b Preprint; McDonald et al, 2017). We
downloaded a coessentiality network directly from Hart et al. For
Aguirre et al (2016) and Tsherniak et al (2017) screens, we down-
loaded raw read count files from the article and Project Achilles site
(Achilles CRISPR screens v3.3.8 and shRNA screens v2.19.1, https://
portals.broadinstitute.org/achilles). For Wang et al screens, we
downloaded raw read counts from their article. For McDonald et al
(2017), we downloaded processed fold change files for three dif-
ferent pools from the DepMap database (https://depmap.org/
portal/). We calculated Bayes factor profiles from raw read
counts of screens and controls defined in articles through the
BAGEL pipeline. To filter low-quality screens out, we applied
thresholds of F-measure (BF = 5) 0.80 for Aguirre et al (2016) and
Wang et al and F-measure (BF = 0) 0.60 and 0.70 for Tsherniak et al
(2017) and McDonald et al (2017), respectively. We combined Bayes
factor profiles from different pools of McDonald et al (2017) by
taking average Bayes factor of overlapped genes. Then, we con-
structed coessentiality networks from Bayes factor profiles. We
discarded pairs of two genes within the 20M window for networks
from CRISPR screens to minimize the possibility of copy number
artifacts.

Detecting functional modules in coessentiality network

Network clustering was conducted with the Markov Cluster Algo-
rithm (MCL) (Enright et al, 2002). We first converted a network file
into a tab file and an mci file using “mcxload.” Then, we ran MCL
using various i-parameters. Last, we made a list of modules using
“mcxdump.” To determine the best i-parameter, we tested func-
tional enrichment by measuring LLS of in-cluster pairwise con-
nection against Gene Ontology Biological Process terms. The
coessentiality network contains two dense and large clusters,
which are mitochondrial oxidative pathway and mitochondrial ri-
bosome subunits. To avoid bias from these two clusters, we ex-
cluded large clusters in test set (more than 50 genes) and large
terms in true positive set (terms with more than 200 genes, and
proteasome-, ribosome-, and spliceosome-related terms). Because
we found that there is little difference between different param-
eters (data not shown), we decided to use the default parameter (I =
2.0). As a result, total 527 clusters were identified, 309 of themwith at
least three genes. Clusters are listed in supplementary data (Table
S6). Pathway annotations of each cluster are summarized for Gene
Ontology, KEGG, NCI_Nature, and Reactome in supplementary data
(Table S7).
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Investigation of factors driving essentiality of clusters

To identify molecular genetic factors associated with cluster es-
sentiality, we downloaded RNA -seq , copy number variation, and
mutation profiles from the Cancer Cell Line Encyclopedia (CCLE)
database (Barretina et al, 2012) in 2017. We classified cell lines as
being “case” cells if the median BF of all genes in the cluster was >5,
and all others as “control” cell lines. We then calculated the
P-values of differential expression, copy number, and mutation be-
tween mean essentiality of clusters and gene properties. For RNA-seq
expression, we used log2(FPKM + 0.5). For copy number variation,
we discretized copy number value into three classes (logCN ≥
0.4 => amplified, logCN ≤ −0.4 => deleted, and −0.4 < logCN < 0.4 =>
neutral). For mutation data, we made a binary profile of mutation
presence, treating silent mutations as wildtype. To measure sig-
nificance of associated factors, we conducted a t test for expression
data, Fisher’s exact test for copy number (with amplifications and
deletions calculated separately), and Fisher’s exact test for binary
mutation data.

Identifying tissue-specific essentiality of clusters and genes

Tissue-specific essentiality was calculated for 517 clusters and 3,483
essential genes against 19 tissues: upper aerodigestive tract, thy-
roid, large intestine, autonomic ganglia, soft tissue, central nervous
system, haematopoietic and lymphoid tissue, stomach, endome-
trium, liver, urinary tract, bone, lung, breast, skin, oesophagus,
ovary, kidney, and pancreas. For each cluster, we first calculated
mean essentiality of member genes per cell line. Then, for each
tissue, we conducted Wilcoxon rank sum tests of two groups, a
group belonging to the target tissue type, and a group consisting of
all other tissue types. Last, adjusted P-value was measured by
Bonferroni correction of P-value.

Investigation of link overlap between other networks

To investigate how many interactions are overlapped with the
coessentiality network from Avana screens, we downloaded
functional interaction networks (HumanNet [Lee et al, 2011] and
STRING v10 [Szklarczyk et al, 2015]) and protein–protein interaction
networks (BioGRID [Chatr-aryamontri et al, 2017], CORUM complex
[Ruepp et al, 2010]). For STRING v10, we used interaction threshold
score 0.500. For CORUM complex data, we generated pair-wised
interactions between protein members in the same protein com-
plex. For fair comparison, genes not in the coessentiality network
were excluded from the investigation.

Protein complex comparison with a coexpression network from
the same 276 cell lines

To construct a coexpression network, we downloaded RNA-seq
expression profile from the CCLE database. Only matched cell
lines and genes used for constructing the coessentiality network
(276 cell lines) were kept for further steps. To prevent abnormal
outlier or zero values, we gave 0.5 pseudo count to all genes, di-
vided each value by themean of each gene, and took the log form of

the resulting value. Expression similarity for all possible combi-
nations of two genes was measured by PCC (Lee et al, 2011). Protein
complex information was downloaded from CORUM database. We
directly compared PCC values of interactions within a protein
complex to observe differences between coessentiality network
and coexpression network. Protein complexes having at least four
interactions are only considered for comparison. We manually
curated protein complexes with significant difference of average
PCC (dPCC > 0.3) between coessentiality interactions and coex-
pression interactions, and then collapsed similar complexes into
one representative. The pairs discarded in the filtering step of
coessentiality network construction were not used in this
comparison.

Drug correlation and data curation

Drug log(IC50) values used for correlation analyses were taken from
the Genomics of Drug Sensitivity in Cancer (GDSC) database (Yang
et al, 2013). Data taken from TableS4A.xlsx located at: https://www.
cancerrxgene.org/gdsc1000/GDSC1000_WebResources/Home.html.

Cell line annotation style from TableS4A was altered to match
Avana project cell line annotation style. GDSC data contained log
(IC50) values from 990 cell lines, which overlapped with 192/276
cell lines used in the Avana project. Log IC50 values contained 265
unique GDSC drug IDs with 250 unique drug names. Pearson
correlations were computed using cor.test from the R package
stats (version 3.2.3), based on mean gene BF in a cluster in a cell
line against the matching cell line log IC50 value of each drug.
Correlations calculated had between 34 and 187 data point pairs
(mean BF, log IC50) within the overlapping 192 cell lines between
GDSC database and Avana project. Pearson correlations that
resulted in a negative correlation with a P-value less than 10−4

were added to the annotation text file. Negative correlations imply
that IC50 values decrease as mean cluster BF in a given cell line
increases (i.e., high BF implies increased sensitivity to drug).
Correlations were calculated for the top 309 co-correlation ranked
clusters.

Investigation of cancer-specific genetic backgrounds

Data preparation for annotation
The CCLE Reverse Phase Protein Array (RPPA) data, RPPA antibody
information, and cell line annotations of 1,037 cancer cell lines were
retrieved from the CCLE portal at: https://portals.broadinstitute.
org/ccle/data. We used the gene-centric RMA-normalized ex-
pression data. Also, we used preprocessed RNA-seq and drug in-
formation (log IC50 data) used for other analysis in this article.

MDM p53 cluster
Essentiality scores for each gene were preprocessed using quantile
normalization within each cell line. The quantile-normalized es-
sentiality scores for the selected genes for each of the 276 cell lines
were gathered in a matrix. Cell lines with essentiality scores lower
than or equal to −10 were set at a Bayes factor of −10.

Next, the heat map was plotted sorting the cell lines by the mean
Bayes factors for each gene in the cluster by using the matplotlib
package in Python. The heat map was annotated by the presence of
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TP53 mutations (orange) with missing values as black and the
Nutlin 3a natural log half maximal inhibitory concentration (IC50)
values for each cell line with missing values as light grey.

Neuroblastoma with MYC
From the 64k network, theMYC gene was added to Cluster 43 (MYCN)
genes, and their quantile-normalized essentiality scores were
gathered in a matrix for all high-quality Avana project cell lines. The
heat map was plotted sorting the cell lines by the mean Bayes
factors for each gene in the cluster. The heat map was annotated
with MYC and MYCN expression values as well as a tissue key,
specifying the neuroblastoma cell lines in orange.

MYB-AML
From the 64k network, the quantile-normalized essentiality scores
of genes from Cluster 17 were gathered in a matrix for all high-
quality Avana project screens. The heat map was plotted sorting the
cell lines by themean Bayes factors for each gene in the cluster and
annotated by a tissue key specifying the cell lines from the he-
matopoietic and lymphoid tissues in orange.

BRCA subtypes
Clusters 52 and 55 from the 64k network were combined and the
quantile-normalized essentiality scores for each gene in the
clusters were gathered in a matrix after filtering for the cell lines
from the breast tissue. The heatmap was plotted by sorting with the
mean essentiality scores for the genes in the clusters across the
breast cell lines. The heat map was annotated with the log2 copy
number values for the ERBB2gene, the RPPA values for ERBB2,
expression values for ESR1 and CP724714, and Refametinib log IC50
values for each cell line with missing values as light grey.

BRAF cluster
From the 32k network, quantile-normalized essentiality scores for
the genes in cluster 19 were gathered in a matrix for all high-quality
Avana cell lines. The cell lines were sorted by the mean Bayes
factors and a heat map was plotted. The heat map was annotated
with log2 copy number, RPPA values, presence of mutation (in
orange) for BRAF, and the log IC50 values for PLX-4720, with missing
values in light grey.

RTK cluster
We filtered for the cell lines in which at least one of the following
RTKs: EGFR, ERBB2, ERBB3, FGFR1, IRS2, and IGF1R have a BF of
greater than 20. Then for that subset of cell lines, the essentiality
scores of the RTKs and their downstream effectors were gathered
in a matrix. Next, in Python, the hierarchical clustering package
called scipy.cluster.hierarchy was used to cluster the cell lines for
each RTK. We used the “average”method representing the UPGMA
algorithm and the “Euclidean” distance metric to calculate the
distance between the newly formed cluster and each remaining
cluster and perform hierarchical clustering. The clustered heat
maps were annotated for EGFR and ERBB2 copy number data.

RAS cluster
We filtered for the cell lines in which at least one of the following
genes: KRAS, NRAS, BRAF, and PIK3CA had a BF of greater than 20.

Next, we obtained the essentiality scores of the RTKs and their
downstream effectors for the filtered cell lines. Later, we performed
hierarchical clustering to cluster the cell lines for each RTK as
explained above. Next, the clustered heat maps were annotated
with mutation status for KRAS, NRAS, BRAF, and PIK3CA in orange.

F measure versus cluster essentiality correlations

For each cluster in the network, the mean Bayes factor of the genes
in that cluster was calculated to get a mean essentiality score for
the cluster for each cell line. Then, the Pearson correlations and
corresponding P-values were calculated using the scipy.stats.
pearsonr from the scipy package based on the mean cluster es-
sentiality score in a cell line against F-measure value of the
matching cell line.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201800278.
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A, Anderson K, André B, et al (2002) Functional profiling of the
Saccharomyces cerevisiae genome. Nature 418: 387–391. doi:10.1038/
nature00935

Han K, Jeng EE, Hess GT, Morgens DW, Li A, Bassik MC (2017) Synergistic drug
combinations for cancer identified in a CRISPR screen for pairwise
genetic interactions. Nat Biotechnol 35: 463–474. doi:10.1038/nbt.3834

Hart T, Moffat J (2016) BAGEL: A computational framework for identifying
essential genes from pooled library screens. BMC Bioinformatics 17:
164. doi:10.1186/s12859-016-1015-8

Hart T, Brown KR, Sircoulomb F, Rottapel R, Moffat J (2014) Measuring error
rates in genomic perturbation screens: Gold standards for human
functional genomics. Mol Syst Biol 10: 733. doi:10.15252/msb.20145216

Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR, MacLeod G, Mis
M, Zimmermann M, Fradet-Turcotte A, Sun S, et al (2015) High-
resolution CRISPR screens reveal fitness genes and genotype-specific
cancer liabilities. Cell 163: 1515–1526. doi:10.1016/j.cell.2015.11.015

Hart T, Tong AHY, Chan K, Van Leeuwen J, Seetharaman A, Aregger M,
Chandrashekhar M, Hustedt N, Seth S, Noonan A, et al (2017a)
Evaluation and design of genome-wide CRISPR/SpCas9 knockout
screens. G3 (Bethesda) 7: 2719–2727. doi:10.1534/g3.117.041277

Hart T, Koh C, Moffat J (2017b) Coessentiality and cofunctionality: A network
approach to learning genetic vulnerabilities from cancer cell line
fitness screens. BioRxiv. doi:10.1101/134346 (Preprint posted May 4, 2017)

Hierro A, Rojas AL, Rojas R, Murthy N, Effantin G, Kajava AV, Steven AC,
Bonifacino JS, Hurley JH (2007) Functional architecture of the retromer
cargo-recognition complex. Nature 449: 1063–1067. doi:10.1038/
nature06216

Hillenmeyer ME, Fung E, Wildenhain J, Pierce SE, Hoon S, Lee W, Proctor M, St
Onge RP, Tyers M, Koller D, et al (2008) The chemical genomic portrait
of yeast: Uncovering a phenotype for all genes. Science 320: 362–365.
doi:10.1126/science.1150021

Horlbeck MA, Xu A, Wang M, Bennett NK, Park CY, Bogdanoff D, Adamson B,
Chow ED, Kampmann M, Peterson TR, et al (2018) Mapping the genetic
landscape of human cells. Cell 174: 953–967.e22. doi:10.1016/j.cell.
2018.06.010

Horn T, Sandmann T, Fischer B, Axelsson E, Huber W, Boutros M (2011)
Mapping of signaling networks through synthetic genetic interaction
analysis by RNAi. Nat Methods 8: 341–346. doi:10.1038/nmeth.1581

Huang M, Weiss WA (2013) Neuroblastoma and MYCN. Cold Spring Harb
Perspect Med 3: a014415. doi:10.1101/cshperspect.a014415

Huang JK, Carlin DE, Yu MK, Zhang W, Kreisberg JF, Tamayo P, Ideker T (2018)
Systematic evaluation of molecular networks for discovery of disease
genes. Cell Syst 6: 484–495.e5. doi:10.1016/j.cels.2018.03.001

Jiang P, Nishimura T, Sakamaki Y, Itakura E, Hatta T, Natsume T, Mizushima N
(2014) The HOPS complex mediates autophagosome-lysosome fusion
through interaction with syntaxin 17. Mol Biol Cell 25: 1327–1337.
doi:10.1091/mbc.e13-08-0447

Jost M, Chen Y, Gilbert LA, Horlbeck MA, Krenning L, Menchon G, Rai A, Cho MY,
Stern JJ, Prota AE, et al (2017) Combined CRISPRi/a-based chemical

A functional interaction network from CRISPR screens Kim et al. https://doi.org/10.26508/lsa.201800278 vol 2 | no 2 | e201800278 13 of 15

https://doi.org/10.1074/jbc.m511311200
https://doi.org/10.1242/jcs.107805
https://doi.org/10.1126/science.1195618
https://doi.org/10.1016/j.tcb.2014.03.003
https://doi.org/10.1016/j.cell.2012.07.032
https://doi.org/10.1126/science.1232044
https://doi.org/10.1126/science.1232044
https://doi.org/10.1038/nature11003
https://doi.org/10.1016/j.cell.2013.01.030
https://doi.org/10.1093/emboj/cdg392
https://doi.org/10.1093/emboj/cdg392
https://doi.org/10.1093/nar/gkw1102
https://doi.org/10.1073/pnas.1109363108
https://doi.org/10.1073/pnas.1105666108
https://doi.org/10.1073/pnas.1105666108
https://doi.org/10.1126/science.1180823
https://doi.org/10.1126/science.aaf1420
https://doi.org/10.1038/nbt.3026
https://doi.org/10.1038/nmeth.4286
https://doi.org/10.1038/nmeth.4286
https://doi.org/10.1093/nar/30.7.1575
https://doi.org/10.1093/nar/gkt1059
https://doi.org/10.1016/j.bbrc.2017.03.112
https://doi.org/10.1016/j.bbrc.2017.03.112
https://doi.org/10.1186/s13059-019-1621-7
https://doi.org/10.1038/nature00935
https://doi.org/10.1038/nature00935
https://doi.org/10.1038/nbt.3834
https://doi.org/10.1186/s12859-016-1015-8
https://doi.org/10.15252/msb.20145216
https://doi.org/10.1016/j.cell.2015.11.015
https://doi.org/10.1534/g3.117.041277
https://doi.org/10.1101/134346
https://doi.org/10.1038/nature06216
https://doi.org/10.1038/nature06216
https://doi.org/10.1126/science.1150021
https://doi.org/10.1016/j.cell.2018.06.010
https://doi.org/10.1016/j.cell.2018.06.010
https://doi.org/10.1038/nmeth.1581
https://doi.org/10.1101/cshperspect.a014415
https://doi.org/10.1016/j.cels.2018.03.001
https://doi.org/10.1091/mbc.e13-08-0447
https://doi.org/10.26508/lsa.201800278


genetic screens reveal that rigosertib is a microtubule-destabilizing
agent. Mol Cell 68: 210–223.e6. doi:10.1016/j.molcel.2017.09.012

Kampmann M, Bassik MC, Weissman JS (2013) Integrated platform for
genome-wide screening and construction of high-density genetic
interaction maps in mammalian cells. Proc Natl Acad Sci U S A 110:
E2317–E2326. doi:10.1073/pnas.1307002110

Kampmann M, Bassik MC, Weissman JS (2014) Functional genomics platform
for pooled screening and generation of mammalian genetic
interaction maps. Nat Protoc 9: 1825–1847. doi:10.1038/nprot.2014.103

Kaszuba K, Grzybek M, Orłowski A, Danne R, Róg T, Simons K, Coskun Ü,
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